1
0
mirror of https://github.com/satwikkansal/wtfpython synced 2024-11-22 02:54:25 +01:00

Update Example: Let's make a giant string

* Add another function `add_bytes_with_plus` actually illustrating
  quadratic behavior for the `+=` operator.
* Add explaination for linear behavior due to `+=` optimizations
  in case of strings.
* Change the order of examples (move string interning example just
  before the giant string example).

Closes https://github.com/satwikkansal/wtfpython/issues/38
This commit is contained in:
Satwik Kansal 2017-10-11 18:35:15 +05:30
parent 31d438294f
commit ea29aa034d

93
README.md vendored
View File

@ -35,10 +35,10 @@ So, here ya go...
- [💡 Explanation:](#-explanation-1)
- [Backslashes at the end of string](#backslashes-at-the-end-of-string)
- [💡 Explanation](#-explanation-4)
- [Let's make a giant string!](#lets-make-a-giant-string)
- [💡 Explanation](#-explanation-5)
- [String interning](#string-interning)
- [💡 Explanation:](#-explanation-2)
- [Let's make a giant string!](#lets-make-a-giant-string)
- [💡 Explanation](#-explanation-5)
- [Yes, it exists!](#yes-it-exists)
- [💡 Explanation:](#-explanation-3)
- [`is` is not what it is!](#is-is-not-what-it-is)
@ -406,6 +406,28 @@ SyntaxError: EOL while scanning string literal
---
### String interning
```py
>>> a = "some_string"
>>> id(a)
140420665652016
>>> id("some" + "_" + "string") # Notice that both the ids are same.
140420665652016
# using "+", three strings:
>>> timeit.timeit("s1 = s1 + s2 + s3", setup="s1 = ' ' * 100000; s2 = ' ' * 100000; s3 = ' ' * 100000", number=100)
0.25748300552368164
# using "+=", three strings:
>>> timeit.timeit("s1 += s2 + s3", setup="s1 = ' ' * 100000; s2 = ' ' * 100000; s3 = ' ' * 100000", number=100)
0.012188911437988281
```
#### 💡 Explanation:
+ `+=` is faster than `+` for concatenating more than two strings because the first string (example, `s1` for `s1 += s2 + s3`) is not destroyed while calculating the complete string.
+ Both the strings refer to the same object because of CPython optimization that tries to use existing immutable objects in some cases (implementation specific) rather than creating a new object every time. You can read more about this [here](https://stackoverflow.com/questions/24245324/about-the-changing-id-of-an-immutable-string).
---
### Let's make a giant string!
This is not a WTF at all, just some nice things to be aware of :)
@ -417,6 +439,12 @@ def add_string_with_plus(iters):
s += "xyz"
assert len(s) == 3*iters
def add_bytes_with_plus(iters):
s = b""
for i in range(iters):
s += b"xyz"
assert len(s) == 3*iters
def add_string_with_format(iters):
fs = "{}"*iters
s = fs.format(*(["xyz"]*iters))
@ -437,43 +465,52 @@ def convert_list_to_string(l, iters):
**Output:**
```py
>>> timeit(add_string_with_plus(10000))
100 loops, best of 3: 9.73 ms per loop
1000 loops, best of 3: 972 µs per loop
>>> timeit(add_bytes_with_plus(10000))
1000 loops, best of 3: 815 µs per loop
>>> timeit(add_string_with_format(10000))
100 loops, best of 3: 5.47 ms per loop
1000 loops, best of 3: 508 µs per loop
>>> timeit(add_string_with_join(10000))
100 loops, best of 3: 10.1 ms per loop
1000 loops, best of 3: 878 µs per loop
>>> l = ["xyz"]*10000
>>> timeit(convert_list_to_string(l, 10000))
10000 loops, best of 3: 75.3 µs per loop
10000 loops, best of 3: 80 µs per loop
```
Let's increase the number of iterations by a factor of 10.
```py
>>> timeit(add_string_with_plus(100000)) # Linear increase in execution time
100 loops, best of 3: 9.75 ms per loop
>>> timeit(add_bytes_with_plus(100000)) # Quadratic increase
1000 loops, best of 3: 974 ms per loop
>>> timeit(add_string_with_format(100000)) # Linear increase
100 loops, best of 3: 5.25 ms per loop
>>> timeit(add_string_with_join(100000)) # Linear increase
100 loops, best of 3: 9.85 ms per loop
>>> l = ["xyz"]*100000
>>> timeit(convert_list_to_string(l, 100000)) # Linear increase
1000 loops, best of 3: 723 µs per loop
```
#### 💡 Explanation
- You can read more about [timeit](https://docs.python.org/3/library/timeit.html) from here. It is generally used to measure the execution time of snippets.
- Don't use `+` for generating long strings — In Python, `str` is immutable, so the left and right strings have to be copied into the new string for every pair of concatenations. If you concatenate four strings of length 10, you'll be copying (10+10) + ((10+10)+10) + (((10+10)+10)+10) = 90 characters instead of just 40 characters. Things get quadratically worse as the number and size of the string increases.
- Don't use `+` for generating long strings — In Python, `str` is immutable, so the left and right strings have to be copied into the new string for every pair of concatenations. If you concatenate four strings of length 10, you'll be copying (10+10) + ((10+10)+10) + (((10+10)+10)+10) = 90 characters instead of just 40 characters. Things get quadratically worse as the number and size of the string increases (justified with the execution times of `add_bytes_with_plus` function)
- Therefore, it's advised to use `.format.` or `%` syntax (however, they are slightly slower than `+` for short strings).
- Or better, if already you've contents available in the form of an iterable object, then use `''.join(iterable_object)` which is much faster.
- `add_string_with_plus` didn't show a quadratic increase in execution time unlike `add_bytes_with_plus` becuase of the `+=` optimizations discussed in the previous example. Had the statement been `s = s + "x" + "y" + "z"` instead of `s += "xyz"`, the increase would have been quadratic.
```py
def add_string_with_plus(iters):
s = ""
for i in range(iters):
s = s + "x" + "y" + "z"
assert len(s) == 3*iters
---
### String interning
```py
>>> a = "some_string"
>>> id(a)
140420665652016
>>> id("some" + "_" + "string") # Notice that both the ids are same.
140420665652016
# using "+", three strings:
>>> timeit.timeit("s1 = s1 + s2 + s3", setup="s1 = ' ' * 100000; s2 = ' ' * 100000; s3 = ' ' * 100000", number=100)
0.25748300552368164
# using "+=", three strings:
>>> timeit.timeit("s1 += s2 + s3", setup="s1 = ' ' * 100000; s2 = ' ' * 100000; s3 = ' ' * 100000", number=100)
0.012188911437988281
```
#### 💡 Explanation:
+ `+=` is faster than `+` for concatenating more than two strings because the first string (example, `s1` for `s1 += s2 + s3`) is not destroyed while calculating the complete string.
+ Both the strings refer to the same object because of CPython optimization that tries to use existing immutable objects in some cases (implementation specific) rather than creating a new object every time. You can read more about this [here](https://stackoverflow.com/questions/24245324/about-the-changing-id-of-an-immutable-string).
>>> timeit(add_string_with_plus(10000))
100 loops, best of 3: 9.87 ms per loop
>>> timeit(add_string_with_plus(100000)) # Quadratic increase in execution time
1 loops, best of 3: 1.09 s per loop
```
---