diff --git a/translations/fa-farsi/README.md b/translations/fa-farsi/README.md index e100c45..22e7eb2 100644 --- a/translations/fa-farsi/README.md +++ b/translations/fa-farsi/README.md @@ -8,12 +8,10 @@

What the f*ck Python! 😱

کاوش و درک پایتون از طریق تکه‌های کد شگفت‌انگیز.

- ترجمه‌ها: [انگلیسی English](https://github.com/satwikkansal/wtfpython) | [چینی 中文](https://github.com/leisurelicht/wtfpython-cn) | [ویتنامی Tiếng Việt](https://github.com/vuduclyunitn/wtfptyhon-vi) | [اسپانیایی Español](https://web.archive.org/web/20220511161045/https://github.com/JoseDeFreitas/wtfpython-es) | [کره‌ای 한국어](https://github.com/buttercrab/wtfpython-ko) | [روسی Русский](https://github.com/satwikkansal/wtfpython/tree/master/translations/ru-russian) | [آلمانی Deutsch](https://github.com/BenSt099/wtfpython) | [Persian فارسی](https://github.com/satwikkansal/wtfpython/tree/master/translations/fa-farsi) | [اضافه کردن ترجمه](https://github.com/satwikkansal/wtfpython/issues/new?title=Add%20translation%20for%20[LANGUAGE]&body=Expected%20time%20to%20finish:%20[X]%20weeks.%20I%27ll%20start%20working%20on%20it%20from%20[Y].) حالت‌های دیگر: [وبسایت تعاملی](https://wtfpython-interactive.vercel.app) | [دفترچه تعاملی](https://colab.research.google.com/github/satwikkansal/wtfpython/blob/master/irrelevant/wtf.ipynb) - پایتون، یه زبان زیبا طراحی شده، سطح بالا و مبتنی بر مفسره که قابلیت‌های بسیاری برای راحتی ما برنامه‌نویس‌ها فراهم می‌کنه. ولی گاهی اوقات قطعه‌کدهایی رو می‌بینیم که تو نگاه اول خروجی‌هاشون واضح نیست. @@ -199,16 +197,19 @@ > >>> triggering_statement > یه خروجی غیرمنتظره > ``` +> > (دلخواه): توضیح یک‌خطی خروجی غیرمنتظره > > > #### 💡 توضیح: > -> * توضیح کوتاه درمورد این‌که چی داره اتفاق میافته و چرا. +> - توضیح کوتاه درمورد این‌که چی داره اتفاق میافته و چرا. +> > ```py > # راه اندازی کد > # مثال‌های بیشتر برای شفاف سازی (در صورت نیاز) > ``` +> > **خروجی (نسخه(های) پایتون):** > > ```py @@ -221,16 +222,17 @@ کنند مگراینکه به صورت جداگانه و به طور واضح نسخه مخصوص پایتون قبل از خروجی ذکر شده باشد. - # استفاده یه راه خوب برای بیشتر بهره بردن، به نظرم، اینه که مثال‌ها رو به ترتیب متوالی بخونید و برای هر مثال: + - کد ابتدایی برای راه اندازی مثال رو با دقت بخونید. اگه شما یه پایتون کار سابقه‌دار باشید، با موفقیت بیشتر اوقات اتفاق بعدی رو پیش‌بینی می‌کنید. - قطعه خروجی رو بخونید و - + بررسی کنید که آیا خروجی‌ها همونطور که انتظار دارید هستند. - + مطمئین بشید که دقیقا دلیل اینکه خروجی اون طوری هست رو می‌دونید. + - بررسی کنید که آیا خروجی‌ها همونطور که انتظار دارید هستند. + - مطمئین بشید که دقیقا دلیل اینکه خروجی اون طوری هست رو می‌دونید. - اگه نمی‌دونید (که کاملا عادیه و اصلا بد نیست)، یک نفس عمیق بکشید و توضیحات رو بخونید (و اگه نفهمیدید، داد بزنید! و [اینجا](https://github.com/emargi/wtfpython/issues/new) درموردش حرف بزنید). - اگه می‌دونید، به افتخار خودتون یه دست محکم بزنید و برید سراغ مثال بعدی. + --- # 👀 مثال‌ها @@ -298,8 +300,6 @@ SyntaxError: invalid syntax 16 ``` - - #### 💡 توضیح **مرور سریع بر عملگر Walrus** @@ -374,6 +374,7 @@ if a := some_func(): ``` 2\. + ```py >>> a = "wtf" >>> b = "wtf" @@ -422,12 +423,13 @@ False منطقیه، نه؟ #### 💡 توضیح: -+ در قطعه‌کد اول و دوم، رفتار کد به دلیل یک بهینه سازی در CPython است (به نام داوطلب سازی رشته‌ها) که باعث می‌شود از برخی مقادیر غیرقابل تغییر، به جای مقداردهی مجدد، دوباره استفاده شود. -+ بیشتر متغیرهایی که به‌این صورت جایگزین می‌شوند، در حافظه دستگاه به مقدار داوطلب خود اشاره می‌کنند (تا از حافظه کمتری استفاده شود) -+ در قطعه‌کدهای بالا، رشته‌ها به‌صورت غیرمستقیم داوطلب می‌شوند. تصمیم اینکه رشته‌ها چه زمانی به صورت غیرمستقیم داوطلب شوند به نحوه پیاده‌سازی و مقداردهی آن‌ها بستگی دارد. برخی قوانین وجود دارند تا بتوانیم داوطلب شدن یا نشدن یک رشته را حدس بزنیم: - * همه رشته‌ها با طول صفر یا یک داوطلب می‌شوند. - * رشته‌ها در زمان کامپایل داوطلب می‌شوند (`'wtf'` داوطلب می‌شود اما `''.join(['w', 't', 'f'])` داوطلب نمی‌شود) - * رشته‌هایی که از حروف ASCII ، اعداد صحیح و آندرلاین تشکیل نشده‌باشند داوطلب نمی‌شود. به همین دلیل `'wtf!'` به خاطر وجود `'!'` داوطلب نشد. پیاده‌سازی این قانون در CPython در [اینجا](https://github.com/python/cpython/blob/3.6/Objects/codeobject.c#L19) قرار دارد. + +- در قطعه‌کد اول و دوم، رفتار کد به دلیل یک بهینه سازی در CPython است (به نام داوطلب سازی رشته‌ها) که باعث می‌شود از برخی مقادیر غیرقابل تغییر، به جای مقداردهی مجدد، دوباره استفاده شود. +- بیشتر متغیرهایی که به‌این صورت جایگزین می‌شوند، در حافظه دستگاه به مقدار داوطلب خود اشاره می‌کنند (تا از حافظه کمتری استفاده شود) +- در قطعه‌کدهای بالا، رشته‌ها به‌صورت غیرمستقیم داوطلب می‌شوند. تصمیم اینکه رشته‌ها چه زمانی به صورت غیرمستقیم داوطلب شوند به نحوه پیاده‌سازی و مقداردهی آن‌ها بستگی دارد. برخی قوانین وجود دارند تا بتوانیم داوطلب شدن یا نشدن یک رشته را حدس بزنیم: + - همه رشته‌ها با طول صفر یا یک داوطلب می‌شوند. + - رشته‌ها در زمان کامپایل داوطلب می‌شوند (`'wtf'` داوطلب می‌شود اما `''.join(['w', 't', 'f'])` داوطلب نمی‌شود) + - رشته‌هایی که از حروف ASCII ، اعداد صحیح و آندرلاین تشکیل نشده‌باشند داوطلب نمی‌شود. به همین دلیل `'wtf!'` به خاطر وجود `'!'` داوطلب نشد. پیاده‌سازی این قانون در CPython در [اینجا](https://github.com/python/cpython/blob/3.6/Objects/codeobject.c#L19) قرار دارد.

@@ -437,14 +439,13 @@ False

-+ زمانی که `"wtf!"` را در یک خط به `a` و `b` اختصاص می‌دهیم، مفسر پایتون شیء جدید می‌سازد و متغیر دوم را به آن ارجاع می‌دهد. اگر مقدار دهی در خط‌های جدا از هم انجام شود، در واقع مفسر "خبر ندارد" که یک شیء مختص به `"wtf!"` از قبل در برنامه وجود دارد (زیرا `"wtf!"` به دلایلی که در بالا گفته شد، به‌صورت غیرمستقیم داوطلب نمی‌شود). این بهینه سازی در زمان کامپایل انجام می‌شود. این بهینه سازی همچنین برای نسخه های (x).۳.۷ وجود ندارد (برای گفت‌وگوی بیشتر این [موضوع](https://github.com/satwikkansal/wtfpython/issues/100) را ببینید). -+ یک واحد کامپایل در یک محیط تعاملی مانند IPython از یک عبارت تشکیل می‌شود، در حالی که برای ماژول‌ها شامل کل ماژول می‌شود. `a, b = "wtf!", "wtf!"` یک عبارت است. در حالی که `a = "wtf!"; b = "wtf!"` دو عبارت در یک خط است. به همین دلیل شناسه‌ها در `a = "wtf!"; b = "wtf!"` متفاوتند و همین‌طور وقتی با مفسر پایتون داخل فایل `some_file.py` اجرا می‌شوند، شناسه‌ها یکسانند. -+ تغییر ناگهانی در خروجی قطعه‌کد چهارم به دلیل [بهینه‌سازی پنجره‌ای](https://en.wikipedia.org/wiki/Peephole_optimization) است که تکنیکی معروف به جمع آوری ثابت‌ها است. به همین خاطر عبارت `'a'*20` با `'aaaaaaaaaaaaaaaaaaaa'` در هنگام کامپایل جایگزین می‌شود تا کمی بار از دوش چرخه‌ساعتی پردازنده کم شود. تکنیک جمع آوری ثابت‌ها فقط مخصوص رشته‌هایی با طول کمتر از 21 است. (چرا؟ فرض کنید که فایل `.pyc` که توسط کامپایلر ساخته می‌شود چقدر بزرگ می‌شد اگر عبارت `'a'*10**10`). [این](https://github.com/python/cpython/blob/3.6/Python/peephole.c#L288) هم کد پیاده‌سازی این تکنیک در CPython. -+ توجه: در پایتون ۳.۷، جمع آوری ثابت‌ها از بهینه‌ساز پنجره‌ای به بهینه‌ساز AST جدید انتقال داده شد همراه با تغییراتی در منطق آن. پس چهارمین قطعه‌کد در پایتون نسخه ۳.۷ کار نمی‌کند. شما می‌توانید در [اینجا](https://bugs.python.org/issue11549) بیشتر درمورد این تغییرات بخوانید. +- زمانی که `"wtf!"` را در یک خط به `a` و `b` اختصاص می‌دهیم، مفسر پایتون شیء جدید می‌سازد و متغیر دوم را به آن ارجاع می‌دهد. اگر مقدار دهی در خط‌های جدا از هم انجام شود، در واقع مفسر "خبر ندارد" که یک شیء مختص به `"wtf!"` از قبل در برنامه وجود دارد (زیرا `"wtf!"` به دلایلی که در بالا گفته شد، به‌صورت غیرمستقیم داوطلب نمی‌شود). این بهینه سازی در زمان کامپایل انجام می‌شود. این بهینه سازی همچنین برای نسخه های (x).۳.۷ وجود ندارد (برای گفت‌وگوی بیشتر این [موضوع](https://github.com/satwikkansal/wtfpython/issues/100) را ببینید). +- یک واحد کامپایل در یک محیط تعاملی مانند IPython از یک عبارت تشکیل می‌شود، در حالی که برای ماژول‌ها شامل کل ماژول می‌شود. `a, b = "wtf!", "wtf!"` یک عبارت است. در حالی که `a = "wtf!"; b = "wtf!"` دو عبارت در یک خط است. به همین دلیل شناسه‌ها در `a = "wtf!"; b = "wtf!"` متفاوتند و همین‌طور وقتی با مفسر پایتون داخل فایل `some_file.py` اجرا می‌شوند، شناسه‌ها یکسانند. +- تغییر ناگهانی در خروجی قطعه‌کد چهارم به دلیل [بهینه‌سازی پنجره‌ای](https://en.wikipedia.org/wiki/Peephole_optimization) است که تکنیکی معروف به جمع آوری ثابت‌ها است. به همین خاطر عبارت `'a'*20` با `'aaaaaaaaaaaaaaaaaaaa'` در هنگام کامپایل جایگزین می‌شود تا کمی بار از دوش چرخه‌ساعتی پردازنده کم شود. تکنیک جمع آوری ثابت‌ها فقط مخصوص رشته‌هایی با طول کمتر از 21 است. (چرا؟ فرض کنید که فایل `.pyc` که توسط کامپایلر ساخته می‌شود چقدر بزرگ می‌شد اگر عبارت `'a'*10**10`). [این](https://github.com/python/cpython/blob/3.6/Python/peephole.c#L288) هم کد پیاده‌سازی این تکنیک در CPython. +- توجه: در پایتون ۳.۷، جمع آوری ثابت‌ها از بهینه‌ساز پنجره‌ای به بهینه‌ساز AST جدید انتقال داده شد همراه با تغییراتی در منطق آن. پس چهارمین قطعه‌کد در پایتون نسخه ۳.۷ کار نمی‌کند. شما می‌توانید در [اینجا](https://bugs.python.org/issue11549) بیشتر درمورد این تغییرات بخوانید. --- - ### ◀ مراقب عملیات‌های زنجیره‌ای باشید ```py @@ -475,16 +476,18 @@ False شاید چنین رفتاری برای شما احمقانه به نظر بیاد ولی برای عملیات‌هایی مثل `a == b == c` و `0 <= x <= 100` عالی عمل می‌کنه. -* عبارت `False is False is False` معادل عبارت `(False is False) and (False is False)` است -* عبارت `True is False == False` معادل عبارت `(True is False) and (False == False)` است و از آنجایی که قسمت اول این عبارت (`True is False`) پس از ارزیابی برابر با `False` می‌شود. پس کل عبارت معادل `False` می‌شود. -* عبارت `1 > 0 < 1` معادل عبارت `(1 > 0) and (0 < 1)` است. -* عبارت `(1 > 0) < 1` معادل عبارت `True < 1` است و : +- عبارت `False is False is False` معادل عبارت `(False is False) and (False is False)` است +- عبارت `True is False == False` معادل عبارت `(True is False) and (False == False)` است و از آنجایی که قسمت اول این عبارت (`True is False`) پس از ارزیابی برابر با `False` می‌شود. پس کل عبارت معادل `False` می‌شود. +- عبارت `1 > 0 < 1` معادل عبارت `(1 > 0) and (0 < 1)` است. +- عبارت `(1 > 0) < 1` معادل عبارت `True < 1` است و : + ```py >>> int(True) 1 >>> True + 1 # مربوط به این بخش نیست ولی همینجوری گذاشتم 2 ``` + پس عبارت `True < 1` معادل عبارت `1 < 1` می‌شود که در کل معادل `False` است. --- @@ -542,9 +545,10 @@ False **فرض بین عملگرهای `is` و `==`** -* عملگر `is` بررسی میکنه که دو متغیر در حافظه دستگاه به یک شیء اشاره میکنند یا نه (یعنی شناسه متغیرها رو با هم تطبیق میده). -* عملگر `==` مقدار متغیرها رو با هم مقایسه میکنه و یکسان بودنشون رو بررسی میکنه. -* پس `is` برای معادل بودن متغیرها در حافظه دستگاه و `==` برای معادل بودن مقادیر استفاده میشه. یه مثال برای شفاف سازی بیشتر: +- عملگر `is` بررسی میکنه که دو متغیر در حافظه دستگاه به یک شیء اشاره میکنند یا نه (یعنی شناسه متغیرها رو با هم تطبیق میده). +- عملگر `==` مقدار متغیرها رو با هم مقایسه میکنه و یکسان بودنشون رو بررسی میکنه. +- پس `is` برای معادل بودن متغیرها در حافظه دستگاه و `==` برای معادل بودن مقادیر استفاده میشه. یه مثال برای شفاف سازی بیشتر: + ```py >>> class A: pass >>> A() is A() # این‌ها دو شیء خالی هستند که در دو جای مختلف در حافظه قرار دارند. @@ -599,9 +603,9 @@ False 140640774013488 ``` -* وقتی a و b در یک خط با `257` مقداردهی میشن، مفسر پایتون یک شیء برای یکی از متغیرها در حافظه میسازه و متغیر دوم رو در حافظه به اون ارجاع میده. اگه این کار رو تو دو خط جدا از هم انجام بدید، درواقع مفسر پایتون از وجود مقدار `257` به عنوان یک شیء، "خبر نداره". +- وقتی a و b در یک خط با `257` مقداردهی میشن، مفسر پایتون یک شیء برای یکی از متغیرها در حافظه میسازه و متغیر دوم رو در حافظه به اون ارجاع میده. اگه این کار رو تو دو خط جدا از هم انجام بدید، درواقع مفسر پایتون از وجود مقدار `257` به عنوان یک شیء، "خبر نداره". -* این یک بهینه سازی توسط کامپایلر هست و مخصوصا در محیط تعاملی به کار برده میشه. وقتی شما دو خط رو در یک مفسر زنده وارد می‌کنید، اون‌ها به صورت جداگانه کامپایل میشن، به همین دلیل بهینه سازی به صورت جداگانه برای هرکدوم اعمال میشه. اگر بخواهید این مثال رو در یک فایل `.py` امتحان کنید، رفتار متفاوتی می‌بینید زیرا فایل به صورت کلی و یک‌جا کامپایل میشه. این بهینه سازی محدود به اعداد صحیح نیست و برای انواع داده‌های غیرقابل تغییر دیگه مانند رشته‌ها (مثال "رشته‌ها می‌توانند دردسرساز شوند" رو ببینید) و اعداد اعشاری هم اعمال میشه. +- این یک بهینه سازی توسط کامپایلر هست و مخصوصا در محیط تعاملی به کار برده میشه. وقتی شما دو خط رو در یک مفسر زنده وارد می‌کنید، اون‌ها به صورت جداگانه کامپایل میشن، به همین دلیل بهینه سازی به صورت جداگانه برای هرکدوم اعمال میشه. اگر بخواهید این مثال رو در یک فایل `.py` امتحان کنید، رفتار متفاوتی می‌بینید زیرا فایل به صورت کلی و یک‌جا کامپایل میشه. این بهینه سازی محدود به اعداد صحیح نیست و برای انواع داده‌های غیرقابل تغییر دیگه مانند رشته‌ها (مثال "رشته‌ها می‌توانند دردسرساز شوند" رو ببینید) و اعداد اعشاری هم اعمال میشه. ```py >>> a, b = 257.0, 257.0 @@ -609,14 +613,14 @@ False True ``` -* چرا این برای پایتون ۳.۷ کار نکرد؟ دلیل انتزاعیش اینه که چنین بهینه‌سازی‌های کامپایلری وابسته به پیاده‌سازی هستن (یعنی بسته به نسخه، و نوع سیستم‌عامل و چیزهای دیگه تغییر میکنن). من هنوز پیگیرم که بدونم که کدوم تغییر تو پیاده‌سازی باعث همچین مشکلاتی میشه، می‌تونید برای خبرهای بیشتر این [موضوع](https://github.com/satwikkansal/wtfpython/issues/100) رو نگاه کنید. +- چرا این برای پایتون ۳.۷ کار نکرد؟ دلیل انتزاعیش اینه که چنین بهینه‌سازی‌های کامپایلری وابسته به پیاده‌سازی هستن (یعنی بسته به نسخه، و نوع سیستم‌عامل و چیزهای دیگه تغییر میکنن). من هنوز پیگیرم که بدونم که کدوم تغییر تو پیاده‌سازی باعث همچین مشکلاتی میشه، می‌تونید برای خبرهای بیشتر این [موضوع](https://github.com/satwikkansal/wtfpython/issues/100) رو نگاه کنید. --- - ### ◀ کلیدهای هش 1\. + ```py some_dict = {} some_dict[5.5] = "JavaScript" @@ -643,9 +647,10 @@ complex خب، چرا Python همه جارو گرفت؟ - #### 💡 توضیح -* تو دیکشنری‌های پایتون چیزی که کلیدها رو یگانه میکنه مقدار کلیدهاست، نه شناسه اون‌ها. پس با اینکه `5`، `5.0` و `5 + 0j` شیءهای متمایزی از نوع‌های متفاوتی هستند ولی از اون جایی که مقدارشون با هم برابره، نمیتونن داخل یه `dict` به عنوان کلید جدا از هم باشن (حتی به عنوان مقادیر داخل یه `set` نمیتونن باشن). وقتی بخواید داخل یه دیکشنری جست‌وجو کنید، به محض اینکه یکی از این داده‌ها رو وارد کنید، مقدار نگاشته‌شده به کلیدی که مقدار برابر با اون داده داره ولی نوعش متفاوته، با موفقیت برگردونده میشه (به جای اینکه به ارور `KeyError` بردخورد کنید.). + +- تو دیکشنری‌های پایتون چیزی که کلیدها رو یگانه میکنه مقدار کلیدهاست، نه شناسه اون‌ها. پس با اینکه `5`، `5.0` و `5 + 0j` شیءهای متمایزی از نوع‌های متفاوتی هستند ولی از اون جایی که مقدارشون با هم برابره، نمیتونن داخل یه `dict` به عنوان کلید جدا از هم باشن (حتی به عنوان مقادیر داخل یه `set` نمیتونن باشن). وقتی بخواید داخل یه دیکشنری جست‌وجو کنید، به محض اینکه یکی از این داده‌ها رو وارد کنید، مقدار نگاشته‌شده به کلیدی که مقدار برابر با اون داده داره ولی نوعش متفاوته، با موفقیت برگردونده میشه (به جای اینکه به ارور `KeyError` بردخورد کنید.). + ```py >>> 5 == 5.0 == 5 + 0j True @@ -658,7 +663,9 @@ complex >>> (5 in some_dict) and (5 + 0j in some_dict) True ``` -* همچنین این قانون برای مقداردهی توی دیکشنری هم اعمال میشه. وقتی شما عبارت `some_dict[5] = "Python"` رو اجرا می‌کنید، پایتون دنبال کلیدی با مقدار یکسان می‌گرده که اینجا ما داریم `5.0 -> "Ruby"` و مقدار نگاشته‌شده به این کلید در دیکشنری رو با مقدار جدید جایگزین میکنه و کلید رو همونجوری که هست باقی میذاره. + +- همچنین این قانون برای مقداردهی توی دیکشنری هم اعمال میشه. وقتی شما عبارت `some_dict[5] = "Python"` رو اجرا می‌کنید، پایتون دنبال کلیدی با مقدار یکسان می‌گرده که اینجا ما داریم `5.0 -> "Ruby"` و مقدار نگاشته‌شده به این کلید در دیکشنری رو با مقدار جدید جایگزین میکنه و کلید رو همونجوری که هست باقی میذاره. + ```py >>> some_dict {5.0: 'Ruby'} @@ -666,15 +673,18 @@ complex >>> some_dict {5.0: 'Python'} ``` -* خب پس چطوری میتونیم مقدار خود کلید رو به `5` تغییر بدیم (جای `5.0`)؟ راستش ما نمیتونیم این کار رو درجا انجام بدیم، ولی میتونیم اول اون کلید رو پاک کنیم (`del some_dict[5.0]`) و بعد کلیدی که میخوایم رو قرار بدیم (`some_dict[5]`) تا بتونیم عدد صحیح `5` رو به جای عدد اعشاری `5.0` به عنوان کلید داخل دیکشنری داشته باشیم. درکل خیلی کم پیش میاد که بخوایم چنین کاری کنیم. -* پایتون چطوری توی دیکشنری که کلید `5.0` رو داره، کلید `5` رو پیدا کرد؟ پایتون این کار رو توی زمان ثابتی توسط توابع هش انجام میده بدون اینکه مجبور باشه همه کلیدها رو بررسی کنه. وقتی پایتون دنبال کلیدی مثل `foo` داخل یه `dict` میگرده، اول مقدار `hash(foo)` رو محاسبه میکنه (که توی زمان ثابتی انجام میشه). از اونجایی که توی پایتون برای مقایسه برابری مقدار دو شیء لازمه که هش یکسانی هم داشته باشند ([مستندات](https://docs.python.org/3/reference/datamodel.html#object.__hash__)). `5`، `5.0` و `5 + 0j` مقدار هش یکسانی دارند. +- خب پس چطوری میتونیم مقدار خود کلید رو به `5` تغییر بدیم (جای `5.0`)؟ راستش ما نمیتونیم این کار رو درجا انجام بدیم، ولی میتونیم اول اون کلید رو پاک کنیم (`del some_dict[5.0]`) و بعد کلیدی که میخوایم رو قرار بدیم (`some_dict[5]`) تا بتونیم عدد صحیح `5` رو به جای عدد اعشاری `5.0` به عنوان کلید داخل دیکشنری داشته باشیم. درکل خیلی کم پیش میاد که بخوایم چنین کاری کنیم. + +- پایتون چطوری توی دیکشنری که کلید `5.0` رو داره، کلید `5` رو پیدا کرد؟ پایتون این کار رو توی زمان ثابتی توسط توابع هش انجام میده بدون اینکه مجبور باشه همه کلیدها رو بررسی کنه. وقتی پایتون دنبال کلیدی مثل `foo` داخل یه `dict` میگرده، اول مقدار `hash(foo)` رو محاسبه میکنه (که توی زمان ثابتی انجام میشه). از اونجایی که توی پایتون برای مقایسه برابری مقدار دو شیء لازمه که هش یکسانی هم داشته باشند ([مستندات](https://docs.python.org/3/reference/datamodel.html#object.__hash__)). `5`، `5.0` و `5 + 0j` مقدار هش یکسانی دارند. + ```py >>> 5 == 5.0 == 5 + 0j True >>> hash(5) == hash(5.0) == hash(5 + 0j) True ``` + **توجه:** برعکس این قضیه لزوما درست نیست. شیءهای میتونن هش های یکسانی داشته باشند ولی مقادیر نابرابری داشته باشند. (این باعث به وجود اومدن پدیده‌ای معروف [تصادف هش](https://en.wikipedia.org/wiki/Collision_(disambiguation)#Other_uses) میشه)، در این صورت توابع هش عملکرد خودشون رو کندتر از حالت عادی انجام می‌دهند. --- @@ -687,6 +697,7 @@ class WTF: ``` **خروجی:** + ```py >>> WTF() == WTF() # دو نمونه متفاوت از یک کلاس نمیتونند برابر هم باشند False @@ -699,10 +710,12 @@ True ``` #### 💡 توضیح: -* وقتی `id` صدا زده شد، پایتون یک شیء با کلاس `WTF` ساخت و اون رو به تابع `id` داد. تابع `id` شناسه این شیء رو میگیره (درواقع آدرس اون شیء در حافظه دستگاه) و شیء رو حذف میکنه. -* وقتی این کار رو دو بار متوالی انجام بدیم، پایتون آدرس یکسانی رو به شیء دوم اختصاص میده. از اونجایی که (در CPython) تابع `id` از آدرس شیءها توی حافظه به عنوان شناسه برای اون‌ها استفاده میکنه، پس شناسه این دو شیء یکسانه. -* پس، شناسه یک شیء تا زمانی که اون شیء وجود داره، منحصربه‌فرده. بعد از اینکه اون شیء حذف میشه یا قبل از اینکه اون شیء به وجود بیاد، چیز دیگه‌ای میتونه اون شناسه رو داشته باشه. -* ولی چرا با عملگر `is` مقدار `False` رو دریافت کردیم؟ بیاید با یه قطعه‌کد ببینیم دلیلش رو. + +- وقتی `id` صدا زده شد، پایتون یک شیء با کلاس `WTF` ساخت و اون رو به تابع `id` داد. تابع `id` شناسه این شیء رو میگیره (درواقع آدرس اون شیء در حافظه دستگاه) و شیء رو حذف میکنه. +- وقتی این کار رو دو بار متوالی انجام بدیم، پایتون آدرس یکسانی رو به شیء دوم اختصاص میده. از اونجایی که (در CPython) تابع `id` از آدرس شیءها توی حافظه به عنوان شناسه برای اون‌ها استفاده میکنه، پس شناسه این دو شیء یکسانه. +- پس، شناسه یک شیء تا زمانی که اون شیء وجود داره، منحصربه‌فرده. بعد از اینکه اون شیء حذف میشه یا قبل از اینکه اون شیء به وجود بیاد، چیز دیگه‌ای میتونه اون شناسه رو داشته باشه. +- ولی چرا با عملگر `is` مقدار `False` رو دریافت کردیم؟ بیاید با یه قطعه‌کد ببینیم دلیلش رو. + ```py class WTF(object): def __init__(self): print("I") @@ -710,6 +723,7 @@ True ``` **خروجی:** + ```py >>> WTF() is WTF() I @@ -724,11 +738,11 @@ True D True ``` + همونطور که مشاهده می‌کنید، ترتیب حذف شدن شیءها باعث تفاوت میشه. --- - ### ◀ بی‌نظمی در خود نظم * ```py @@ -757,6 +771,7 @@ class OrderedDictWithHash(OrderedDict): ``` **خروجی** + ```py >>> dictionary == ordered_dict # اگر مقدار اولی با دومی برابره True @@ -795,6 +810,7 @@ TypeError: unhashable type: 'dict' > مقایسه برابری بین شیءهایی از نوع OrderedDict به ترتیب اعضای آن‌ها هم بستگی دارد و به صورت `list(od1.items())==list(od2.items())` پیاده سازی شده است. مقایسه برابری بین شیءهای `OrderedDict` و شیءهای قابل نگاشت دیگر به ترتیب اعضای آن‌ها بستگی ندارد و مقایسه همانند دیکشنری‌های عادی انجام می‌شود. - این رفتار باعث میشه که بتونیم `OrderedDict` ها رو هرجایی که یک دیکشنری عادی کاربرد داره، جایگزین کنیم و استفاده کنیم. - خب، حالا چرا تغییر ترتیب روی طول مجموعه‌ای که از دیکشنری‌ها ساختیم، تاثیر گذاشت؟ جوابش همین رفتار مقایسه‌ای غیرانتقالی بین این شیءهاست. از اونجایی که `set` ها مجموعه‌ای از عناصر غیرتکراری و بدون نظم هستند، ترتیبی که عناصر تو این مجموعه‌ها درج میشن نباید مهم باشه. ولی در این مورد، مهم هست. بیاید کمی تجزیه و تحلیلش کنیم. + ```py >>> some_set = set() >>> some_set.add(dictionary) # این شیء‌ها از قطعه‌کدهای بالا هستند. @@ -827,7 +843,6 @@ TypeError: unhashable type: 'dict' --- - ### ◀ تلاش کن... * ```py @@ -889,7 +904,6 @@ Iteration 0 --- - ### ◀ برای چی؟ ```py @@ -900,18 +914,23 @@ for i, some_dict[i] in enumerate(some_string): ``` **خروجی:** + ```py >>> some_dict # یک دیکشنری مرتب‌شده نمایان میشه. {0: 'w', 1: 't', 2: 'f'} ``` -#### 💡 توضیح: -* یک حلقه `for` در [گرامر پایتون](https://docs.python.org/3/reference/grammar.html) این طور تعریف میشه: +#### 💡 توضیح: + +- یک حلقه `for` در [گرامر پایتون](https://docs.python.org/3/reference/grammar.html) این طور تعریف میشه: + ``` for_stmt: 'for' exprlist 'in' testlist ':' suite ['else' ':' suite] ``` + به طوری که `exprlist` یک هدف برای مقداردهیه. این یعنی، معادل عبارت `{exprlist} = {next_value}` **برای هر شیء داخل `testlist` اجرا می‌شود**. یک مثال جالب برای نشون دادن این تعریف: + ```py for i in range(4): print(i) @@ -919,6 +938,7 @@ for i, some_dict[i] in enumerate(some_string): ``` **خروجی:** + ``` 0 1 @@ -932,7 +952,8 @@ for i, some_dict[i] in enumerate(some_string): - عبارت مقداردهی `i = 10` به خاطر نحوه کار کردن حلقه‌ها، هیچوقت باعث تغییر در تکرار حلقه نمیشه. قبل از شروع هر تکرار، مقدار بعدی که توسط شیء قابل تکرار (که در اینجا `range(4)` است) ارائه میشه، از بسته خارج میشه و به متغیرهای لیست هدف (که در اینجا `i` است) مقداردهی میشه. -* تابع `enumerate(some_string)`، یک متغیر `i` (که یک شمارنده افزایشی است) و یک حرف از حروف رشته `some_string` رو در هر تکرار برمیگردونه. و بعدش برای کلید `i` (تازه مقداردهی‌شده) در دیکشنری `some_dict`، مقدار اون حرف رو تنظیم می‌کنه. بازشده این حلقه می‌تونه مانند مثال زیر ساده بشه: +- تابع `enumerate(some_string)`، یک متغیر `i` (که یک شمارنده افزایشی است) و یک حرف از حروف رشته `some_string` رو در هر تکرار برمیگردونه. و بعدش برای کلید `i` (تازه مقداردهی‌شده) در دیکشنری `some_dict`، مقدار اون حرف رو تنظیم می‌کنه. بازشده این حلقه می‌تونه مانند مثال زیر ساده بشه: + ```py >>> i, some_dict[i] = (0, 'w') >>> i, some_dict[i] = (1, 't') @@ -945,6 +966,7 @@ for i, some_dict[i] in enumerate(some_string): ### ◀ اختلاف زمانی در محاسبه 1\. + ```py array = [1, 8, 15] # یک عبارت تولیدکننده عادی @@ -972,6 +994,7 @@ array_2[:] = [1,2,3,4,5] ``` **خروجی:** + ```py >>> print(list(gen_1)) [1, 2, 3, 4] @@ -992,6 +1015,7 @@ array_4 = [400, 500, 600] ``` **خروجی:** + ```py >>> print(list(gen)) [401, 501, 601, 402, 502, 602, 403, 503, 603] @@ -1010,7 +1034,6 @@ array_4 = [400, 500, 600] --- - ### ◀ هر گردی، گردو نیست ```py @@ -1021,13 +1044,13 @@ False ``` #### 💡 توضیح + - عملگر `is not` یک عملگر باینری واحده و رفتارش متفاوت تر از استفاده `is` و `not` به صورت جداگانه‌ست. - عملگر `is not` مقدار `False` رو برمیگردونه اگر متغیرها در هردو سمت این عملگر به شیء یکسانی اشاره کنند و درغیر این صورت، مقدار `True` برمیگردونه - در مثال بالا، عبارت `(not None)` برابره با مقدار `True` از اونجایی که مقدار `None` در زمینه boolean به `False` تبدیل میشه. پس کل عبارت معادل عبارت `'something' is True` میشه. --- - ### ◀ یک بازی دوز که توش X همون اول برنده میشه! @@ -1092,11 +1115,9 @@ board = [row] * 3 --- - ### ◀ متغیر شرودینگر * - ```py funcs = [] results = [] @@ -1110,6 +1131,7 @@ funcs_results = [func() for func in funcs] ``` **خروجی:** + ```py >>> results [0, 1, 2, 3, 4, 5, 6] @@ -1128,7 +1150,8 @@ funcs_results = [func() for func in funcs] ``` #### 💡 توضیح: -* وقتی یک تابع رو در داخل یک حلقه تعریف می‌کنیم که در بدنه‌اش از متغیر اون حلقه استفاده شده، بست این تابع به *متغیر* وصله، نه *مقدار* اون. تابع به جای اینکه از مقدار `x` در زمان تعریف تابع استفاده کنه، در زمینه اطرافش دنبال `x` می‌گرده. پس همه این توابع از آخرین مقداری که به متغیر `x` مقداردهی شده برای محاسباتشون استفاده می‌کنند. ما می‌تونیم ببینیم که این توابع از متغیر `x` که در زمینه اطرافشون (*نه* از متغیر محلی) هست، استفاده می‌کنند، به این صورت: + +- وقتی یک تابع رو در داخل یک حلقه تعریف می‌کنیم که در بدنه‌اش از متغیر اون حلقه استفاده شده، بست این تابع به *متغیر* وصله، نه *مقدار* اون. تابع به جای اینکه از مقدار `x` در زمان تعریف تابع استفاده کنه، در زمینه اطرافش دنبال `x` می‌گرده. پس همه این توابع از آخرین مقداری که به متغیر `x` مقداردهی شده برای محاسباتشون استفاده می‌کنند. ما می‌تونیم ببینیم که این توابع از متغیر `x` که در زمینه اطرافشون (*نه* از متغیر محلی) هست، استفاده می‌کنند، به این صورت: ```py >>> import inspect @@ -1144,7 +1167,7 @@ ClosureVars(nonlocals={}, globals={'x': 6}, builtins={}, unbound=set()) [42, 42, 42, 42, 42, 42, 42] ``` -* برای رسیدن به رفتار موردنظر شما می‌تونید متغیر حلقه رو به عنوان یک متغیر اسم‌دار به تابع بدید. **چرا در این صورت کار می‌کنه؟** چون اینجوری یک متغیر در دامنه خود تابع تعریف میشه. تابع دیگه دنبال مقدار `x` در دامنه اطراف (سراسری) نمی‌گرده ولی یک متغیر محلی برای ذخیره کردن مقدار `x` در اون لحظه می‌سازه. +- برای رسیدن به رفتار موردنظر شما می‌تونید متغیر حلقه رو به عنوان یک متغیر اسم‌دار به تابع بدید. **چرا در این صورت کار می‌کنه؟** چون اینجوری یک متغیر در دامنه خود تابع تعریف میشه. تابع دیگه دنبال مقدار `x` در دامنه اطراف (سراسری) نمی‌گرده ولی یک متغیر محلی برای ذخیره کردن مقدار `x` در اون لحظه می‌سازه. ```py funcs = [] @@ -1171,10 +1194,10 @@ ClosureVars(nonlocals={}, globals={}, builtins={}, unbound=set()) --- - ### ◀ اول مرغ بوده یا تخم مرغ؟ * 1\. + ```py >>> isinstance(3, int) True @@ -1186,7 +1209,7 @@ True پس کدوم کلاس پایه "نهایی" هست؟ راستی سردرگمی بیشتری هم تو راهه. -2\. +2\. ```py >>> class A: pass @@ -1209,23 +1232,22 @@ True False ``` - #### 💡 توضیح - در پایتون، `type` یک [متاکلاس](https://realpython.com/python-metaclasses/) است. - در پایتون **همه چیز** یک `object` است، که کلاس‌ها و همچنین نمونه‌هاشون (یا همان instance های کلاس‌ها) هم شامل این موضوع میشن. - کلاس `type` یک متاکلاسه برای کلاس `object` و همه کلاس‌ها (همچنین کلاس `type`) به صورت مستقیم یا غیرمستقیم از کلاس `object` ارث بری کرده است. - هیچ کلاس پایه واقعی بین کلاس‌های `object` و `type` وجود نداره. سردرگمی که در قطعه‌کدهای بالا به وجود اومده، به خاطر اینه که ما به این روابط (یعنی `issubclass` و `isinstance`) از دیدگاه کلاس‌های پایتون فکر می‌کنیم. رابطه بین `object` و `type` رو در پایتون خالص نمیشه بازتولید کرد. برای اینکه دقیق‌تر باشیم، رابطه‌های زیر در پایتون خالص نمی‌تونند بازتولید بشن. - + کلاس A یک نمونه از کلاس B، و کلاس B یک نمونه از کلاس A باشه. - + کلاس A یک نمونه از خودش باشه. + - کلاس A یک نمونه از کلاس B، و کلاس B یک نمونه از کلاس A باشه. + - کلاس A یک نمونه از خودش باشه. - این روابط بین `object` و `type` (که هردو نمونه یکدیگه و همچنین خودشون باشند) به خاطر "تقلب" در مرحله پیاده‌سازی، وجود دارند. --- - ### ◀ روابط بین زیرمجموعه کلاس‌ها **خروجی:** + ```py >>> from collections.abc import Hashable >>> issubclass(list, object) @@ -1236,14 +1258,14 @@ True False ``` -ما انتظار داشتیم که روابط بین زیرکلاس‌ها، انتقالی باشند، درسته؟ (یعنی اگه `A` زیرکلاس `B` باشه و `B` هم زیرکلاس `C` باشه، کلس `A` __باید__ زیرکلاس `C` باشه) +ما انتظار داشتیم که روابط بین زیرکلاس‌ها، انتقالی باشند، درسته؟ (یعنی اگه `A` زیرکلاس `B` باشه و `B` هم زیرکلاس `C` باشه، کلس `A` **باید** زیرکلاس `C` باشه) #### 💡 توضیح: -* روابط بین زیرکلاس‌ها در پایتون لزوما انتقالی نیستند. همه مجازند که تابع `__subclasscheck__` دلخواه خودشون رو در یک متاکلاس تعریف کنند. -* وقتی عبارت `issubclass(cls, Hashable)` اجرا میشه، برنامه دنبال یک تابع "غیر نادرست" (یا non-Falsy) در `cls` یا هرچیزی که ازش ارث‌بری می‌کنه، می‌گرده. -* از اونجایی که `object` قابل هش شدنه، ولی `list` این‌طور نیست، رابطه انتقالی شکسته میشه. -* توضیحات با جزئیات بیشتر [اینجا](https://www.naftaliharris.com/blog/python-subclass-intransitivity/) پیدا میشه. +- روابط بین زیرکلاس‌ها در پایتون لزوما انتقالی نیستند. همه مجازند که تابع `__subclasscheck__` دلخواه خودشون رو در یک متاکلاس تعریف کنند. +- وقتی عبارت `issubclass(cls, Hashable)` اجرا میشه، برنامه دنبال یک تابع "غیر نادرست" (یا non-Falsy) در `cls` یا هرچیزی که ازش ارث‌بری می‌کنه، می‌گرده. +- از اونجایی که `object` قابل هش شدنه، ولی `list` این‌طور نیست، رابطه انتقالی شکسته میشه. +- توضیحات با جزئیات بیشتر [اینجا](https://www.naftaliharris.com/blog/python-subclass-intransitivity/) پیدا میشه. --- @@ -1251,6 +1273,7 @@ False 1. + ```py class SomeClass: def method(self): @@ -1266,6 +1289,7 @@ class SomeClass: ``` **خروجی:** + ```py >>> print(SomeClass.method is SomeClass.method) True @@ -1281,12 +1305,14 @@ True چه اتفاقی برای نمونه‌های `SomeClass` می‌افتد: 2. + ```py o1 = SomeClass() o2 = SomeClass() ``` **خروجی:** + ```py >>> print(o1.method == o2.method) False @@ -1305,35 +1331,46 @@ True دسترسی به `classm` یا `method` دو بار، اشیایی برابر اما نه *یکسان* را برای همان نمونه از `SomeClass` ایجاد می‌کند. #### 💡 توضیح -* تابع‌ها [وصاف](https://docs.python.org/3/howto/descriptor.html) هستند. هر زمان که تابعی به عنوان یک ویژگی فراخوانی شود، وصف فعال می‌شود و یک شیء متد ایجاد می‌کند که تابع را به شیء صاحب آن ویژگی "متصل" می‌کند. اگر این متد فراخوانی شود، تابع را با ارسال ضمنی شیء متصل‌شده به عنوان اولین آرگومان صدا می‌زند (به این ترتیب است که `self` را به عنوان اولین آرگومان دریافت می‌کنیم، با وجود اینکه آن را به‌طور صریح ارسال نکرده‌ایم). + +- تابع‌ها [وصاف](https://docs.python.org/3/howto/descriptor.html) هستند. هر زمان که تابعی به عنوان یک ویژگی فراخوانی شود، وصف فعال می‌شود و یک شیء متد ایجاد می‌کند که تابع را به شیء صاحب آن ویژگی "متصل" می‌کند. اگر این متد فراخوانی شود، تابع را با ارسال ضمنی شیء متصل‌شده به عنوان اولین آرگومان صدا می‌زند (به این ترتیب است که `self` را به عنوان اولین آرگومان دریافت می‌کنیم، با وجود اینکه آن را به‌طور صریح ارسال نکرده‌ایم). + ```py >>> o1.method > ``` -* دسترسی به ویژگی چندین بار، هر بار یک شیء متد جدید ایجاد می‌کند! بنابراین عبارت `o1.method is o1.method` هرگز درست (truthy) نیست. با این حال، دسترسی به تابع‌ها به عنوان ویژگی‌های کلاس (و نه نمونه) متد ایجاد نمی‌کند؛ بنابراین عبارت `SomeClass.method is SomeClass.method` درست است. + +- دسترسی به ویژگی چندین بار، هر بار یک شیء متد جدید ایجاد می‌کند! بنابراین عبارت `o1.method is o1.method` هرگز درست (truthy) نیست. با این حال، دسترسی به تابع‌ها به عنوان ویژگی‌های کلاس (و نه نمونه) متد ایجاد نمی‌کند؛ بنابراین عبارت `SomeClass.method is SomeClass.method` درست است. + ```py >>> SomeClass.method ``` -* `classmethod` توابع را به متدهای کلاس تبدیل می‌کند. متدهای کلاس وصاف‌هایی هستند که هنگام دسترسی، یک شیء متد ایجاد می‌کنند که به *کلاس* (نوع) شیء متصل می‌شود، نه خود شیء. + +- `classmethod` توابع را به متدهای کلاس تبدیل می‌کند. متدهای کلاس وصاف‌هایی هستند که هنگام دسترسی، یک شیء متد ایجاد می‌کنند که به *کلاس* (نوع) شیء متصل می‌شود، نه خود شیء. + ```py >>> o1.classm > ``` -* برخلاف توابع، `classmethod`‌ها هنگام دسترسی به عنوان ویژگی‌های کلاس نیز یک شیء متد ایجاد می‌کنند (که در این حالت به خود کلاس متصل می‌شوند، نه نوع آن). بنابراین عبارت `SomeClass.classm is SomeClass.classm` نادرست (falsy) است. + +- برخلاف توابع، `classmethod`‌ها هنگام دسترسی به عنوان ویژگی‌های کلاس نیز یک شیء متد ایجاد می‌کنند (که در این حالت به خود کلاس متصل می‌شوند، نه نوع آن). بنابراین عبارت `SomeClass.classm is SomeClass.classm` نادرست (falsy) است. + ```py >>> SomeClass.classm > ``` -* یک شیء متد زمانی برابر در نظر گرفته می‌شود که هم تابع‌ها برابر باشند و هم شیءهای متصل‌شده یکسان باشند. بنابراین عبارت `o1.method == o1.method` درست (truthy) است، هرچند که آن‌ها در حافظه شیء یکسانی نیستند. -* `staticmethod` توابع را به یک وصف "بدون عملیات" (no-op) تبدیل می‌کند که تابع را به همان صورت بازمی‌گرداند. هیچ شیء متدی ایجاد نمی‌شود، بنابراین مقایسه با `is` نیز درست (truthy) است. + +- یک شیء متد زمانی برابر در نظر گرفته می‌شود که هم تابع‌ها برابر باشند و هم شیءهای متصل‌شده یکسان باشند. بنابراین عبارت `o1.method == o1.method` درست (truthy) است، هرچند که آن‌ها در حافظه شیء یکسانی نیستند. +- `staticmethod` توابع را به یک وصف "بدون عملیات" (no-op) تبدیل می‌کند که تابع را به همان صورت بازمی‌گرداند. هیچ شیء متدی ایجاد نمی‌شود، بنابراین مقایسه با `is` نیز درست (truthy) است. + ```py >>> o1.staticm >>> SomeClass.staticm ``` -* ایجاد شیءهای "متد" جدید در هر بار فراخوانی متدهای نمونه و نیاز به اصلاح آرگومان‌ها برای درج `self`، عملکرد را به شدت تحت تأثیر قرار می‌داد. + +- ایجاد شیءهای "متد" جدید در هر بار فراخوانی متدهای نمونه و نیاز به اصلاح آرگومان‌ها برای درج `self`، عملکرد را به شدت تحت تأثیر قرار می‌داد. CPython 3.7 [این مشکل را حل کرد](https://bugs.python.org/issue26110) با معرفی opcodeهای جدیدی که فراخوانی متدها را بدون ایجاد شیء متد موقتی مدیریت می‌کنند. این به شرطی است که تابع دسترسی‌یافته واقعاً فراخوانی شود، بنابراین قطعه‌کدهای اینجا تحت تأثیر قرار نمی‌گیرند و همچنان متد ایجاد می‌کنند :) ### ◀ آل-ترو-یشن * @@ -1409,6 +1446,7 @@ SyntaxError: invalid syntax ### ◀ رشته‌ها و بک‌اسلش‌ها **خروجی:** + ```py >>> print("\"") " @@ -1429,11 +1467,14 @@ True #### 💡 توضیح: - در یک رشته‌ی معمولی در پایتون، بک‌اسلش برای فرار دادن (escape) نویسه‌هایی استفاده می‌شود که ممکن است معنای خاصی داشته باشند (مانند تک‌نقل‌قول، دوتا‌نقل‌قول، و خودِ بک‌اسلش). + ```py >>> "wt\"f" 'wt"f' ``` + - در یک رشته‌ی خام (raw string literal) که با پیشوند `r` مشخص می‌شود، بک‌اسلش‌ها خودشان به همان شکل منتقل می‌شوند، به‌همراه رفتار فرار دادن نویسه‌ی بعدی. + ```py >>> r'wt\"f' == 'wt\\"f' True @@ -1445,6 +1486,7 @@ True >>> print(r"\\n") '\\n' ``` + - در یک رشته‌ی خام (raw string) که با پیشوند `r` مشخص می‌شود، بک‌اسلش‌ها خودشان به همان صورت منتقل می‌شوند، همراه با رفتاری که کاراکتر بعدی را فرار می‌دهد (escape می‌کند). --- @@ -1457,6 +1499,7 @@ y = False ``` **خروجی:** + ```py >>> not x == y True @@ -1469,16 +1512,17 @@ SyntaxError: invalid syntax #### 💡 توضیح: -* تقدم عملگرها بر نحوه‌ی ارزیابی یک عبارت تأثیر می‌گذارد، و در پایتون، عملگر `==` تقدم بالاتری نسبت به عملگر `not` دارد. -* بنابراین عبارت `not x == y` معادل `not (x == y)` است که خودش معادل `not (True == False)` بوده و در نهایت به `True` ارزیابی می‌شود. -* اما `x == not y` یک `SyntaxError` ایجاد می‌کند، چون می‌توان آن را به صورت `(x == not) y` تفسیر کرد، نه آن‌طور که در نگاه اول انتظار می‌رود یعنی `x == (not y)`. -* تجزیه‌گر (parser) انتظار دارد که توکن `not` بخشی از عملگر `not in` باشد (چون هر دو عملگر `==` و `not in` تقدم یکسانی دارند)، اما پس از اینکه توکن `in` بعد از `not` پیدا نمی‌شود، خطای `SyntaxError` صادر می‌شود. +- تقدم عملگرها بر نحوه‌ی ارزیابی یک عبارت تأثیر می‌گذارد، و در پایتون، عملگر `==` تقدم بالاتری نسبت به عملگر `not` دارد. +- بنابراین عبارت `not x == y` معادل `not (x == y)` است که خودش معادل `not (True == False)` بوده و در نهایت به `True` ارزیابی می‌شود. +- اما `x == not y` یک `SyntaxError` ایجاد می‌کند، چون می‌توان آن را به صورت `(x == not) y` تفسیر کرد، نه آن‌طور که در نگاه اول انتظار می‌رود یعنی `x == (not y)`. +- تجزیه‌گر (parser) انتظار دارد که توکن `not` بخشی از عملگر `not in` باشد (چون هر دو عملگر `==` و `not in` تقدم یکسانی دارند)، اما پس از اینکه توکن `in` بعد از `not` پیدا نمی‌شود، خطای `SyntaxError` صادر می‌شود. --- ### ◀ رشته‌های نیمه سه‌نقل‌قولی **خروجی:** + ```py >>> print('wtfpython''') wtfpython @@ -1494,7 +1538,8 @@ SyntaxError: EOF while scanning triple-quoted string literal ``` #### 💡 توضیح: -+ پایتون از الحاق ضمنی [رشته‌های متنی](https://docs.python.org/3/reference/lexical_analysis.html#string-literal-concatenation) پشتیبانی می‌کند. برای مثال، + +- پایتون از الحاق ضمنی [رشته‌های متنی](https://docs.python.org/3/reference/lexical_analysis.html#string-literal-concatenation) پشتیبانی می‌کند. برای مثال، ``` >>> print("wtf" "python") @@ -1503,7 +1548,7 @@ SyntaxError: EOF while scanning triple-quoted string literal wtf ``` -+ `'''` و `"""` نیز جداکننده‌های رشته‌ای در پایتون هستند که باعث ایجاد SyntaxError می‌شوند، چون مفسر پایتون هنگام اسکن رشته‌ای که با سه‌نقل‌قول آغاز شده، انتظار یک سه‌نقل‌قول پایانی به‌عنوان جداکننده را دارد. +- `'''` و `"""` نیز جداکننده‌های رشته‌ای در پایتون هستند که باعث ایجاد SyntaxError می‌شوند، چون مفسر پایتون هنگام اسکن رشته‌ای که با سه‌نقل‌قول آغاز شده، انتظار یک سه‌نقل‌قول پایانی به‌عنوان جداکننده را دارد. --- @@ -1527,6 +1572,7 @@ for item in mixed_list: ``` **خروجی:** + ```py >>> integers_found_so_far 4 @@ -1534,8 +1580,8 @@ for item in mixed_list: 0 ``` - 2\. + ```py >>> some_bool = True >>> "wtf" * some_bool @@ -1561,20 +1607,19 @@ def tell_truth(): I have lost faith in truth! ``` - - #### 💡 توضیح: -* در پایتون، `bool` زیرکلاسی از `int` است - +- در پایتون، `bool` زیرکلاسی از `int` است + ```py >>> issubclass(bool, int) True >>> issubclass(int, bool) False ``` - -* و بنابراین، `True` و `False` نمونه‌هایی از `int` هستند + +- و بنابراین، `True` و `False` نمونه‌هایی از `int` هستند + ```py >>> isinstance(True, int) True @@ -1582,7 +1627,8 @@ I have lost faith in truth! True ``` -* مقدار عددی `True` برابر با `1` و مقدار عددی `False` برابر با `0` است. +- مقدار عددی `True` برابر با `1` و مقدار عددی `False` برابر با `0` است. + ```py >>> int(True) 1 @@ -1590,17 +1636,18 @@ I have lost faith in truth! 0 ``` -* این پاسخ در StackOverflow را ببینید: [answer](https://stackoverflow.com/a/8169049/4354153) برای توضیح منطقی پشت این موضوع. +- این پاسخ در StackOverflow را ببینید: [answer](https://stackoverflow.com/a/8169049/4354153) برای توضیح منطقی پشت این موضوع. -* در ابتدا، پایتون نوع `bool` نداشت (کاربران از 0 برای false و مقادیر غیر صفر مثل 1 برای true استفاده می‌کردند). `True`، `False` و نوع `bool` در نسخه‌های 2.x اضافه شدند، اما برای سازگاری با نسخه‌های قبلی، `True` و `False` نمی‌توانستند به عنوان ثابت تعریف شوند. آن‌ها فقط متغیرهای توکار (built-in) بودند و امکان تغییر مقدارشان وجود داشت. +- در ابتدا، پایتون نوع `bool` نداشت (کاربران از 0 برای false و مقادیر غیر صفر مثل 1 برای true استفاده می‌کردند). `True`، `False` و نوع `bool` در نسخه‌های 2.x اضافه شدند، اما برای سازگاری با نسخه‌های قبلی، `True` و `False` نمی‌توانستند به عنوان ثابت تعریف شوند. آن‌ها فقط متغیرهای توکار (built-in) بودند و امکان تغییر مقدارشان وجود داشت. -* پایتون ۳ با نسخه‌های قبلی ناسازگار بود، این مشکل سرانجام رفع شد، و بنابراین قطعه‌کد آخر در نسخه‌های Python 3.x کار نخواهد کرد! +- پایتون ۳ با نسخه‌های قبلی ناسازگار بود، این مشکل سرانجام رفع شد، و بنابراین قطعه‌کد آخر در نسخه‌های Python 3.x کار نخواهد کرد! --- ### ◀ متغیرهای کلاس و متغیرهای نمونه 1\. + ```py class A: x = 1 @@ -1613,6 +1660,7 @@ class C(A): ``` **Output:** + ```py >>> A.x, B.x, C.x (1, 1, 1) @@ -1631,6 +1679,7 @@ class C(A): ``` 2\. + ```py class SomeClass: some_var = 15 @@ -1663,9 +1712,8 @@ True #### 💡 توضیح: -* متغیرهای کلاس و متغیرهای نمونه‌های کلاس درونی به‌صورت دیکشنری‌هایی از شیء کلاس مدیریت می‌شوند. اگر نام متغیری در دیکشنری کلاس جاری پیدا نشود، کلاس‌های والد برای آن جست‌وجو می‌شوند. -* عملگر `+=` شیء قابل‌تغییر (mutable) را به‌صورت درجا (in-place) تغییر می‌دهد بدون اینکه شیء جدیدی ایجاد کند. بنابراین، تغییر ویژگی یک نمونه بر نمونه‌های دیگر و همچنین ویژگی کلاس تأثیر می‌گذارد. - +- متغیرهای کلاس و متغیرهای نمونه‌های کلاس درونی به‌صورت دیکشنری‌هایی از شیء کلاس مدیریت می‌شوند. اگر نام متغیری در دیکشنری کلاس جاری پیدا نشود، کلاس‌های والد برای آن جست‌وجو می‌شوند. +- عملگر `+=` شیء قابل‌تغییر (mutable) را به‌صورت درجا (in-place) تغییر می‌دهد بدون اینکه شیء جدیدی ایجاد کند. بنابراین، تغییر ویژگی یک نمونه بر نمونه‌های دیگر و همچنین ویژگی کلاس تأثیر می‌گذارد. --- @@ -1694,6 +1742,7 @@ def some_func(val): ``` #### 💡 توضیح: + - این یک باگ در نحوه‌ی مدیریت `yield` توسط CPython در ژنراتورها و درک لیستی (comprehensions) است. - منبع و توضیحات را می‌توانید اینجا ببینید: https://stackoverflow.com/questions/32139885/yield-in-list-comprehensions-and-generator-expressions - گزارش باگ مرتبط: https://bugs.python.org/issue10544 @@ -1701,7 +1750,6 @@ def some_func(val): --- - ### ◀ بازگرداندن با استفاده از `yield from`! 1\. @@ -1745,13 +1793,13 @@ def some_func(x): #### 💡 توضیح: -+ از پایتون نسخه ۳.۳ به بعد، امکان استفاده از عبارت `return` همراه با مقدار در داخل ژنراتورها فراهم شد (نگاه کنید به [PEP380](https://www.python.org/dev/peps/pep-0380/)). [مستندات رسمی](https://www.python.org/dev/peps/pep-0380/#enhancements-to-stopiteration) می‌گویند: +- از پایتون نسخه ۳.۳ به بعد، امکان استفاده از عبارت `return` همراه با مقدار در داخل ژنراتورها فراهم شد (نگاه کنید به [PEP380](https://www.python.org/dev/peps/pep-0380/)). [مستندات رسمی](https://www.python.org/dev/peps/pep-0380/#enhancements-to-stopiteration) می‌گویند: > دلیل: "... `return expr` در یک ژنراتور باعث می‌شود که هنگام خروج از ژنراتور، `StopIteration(expr)` ایجاد شود." -+ در حالت `some_func(3)`، استثنای `StopIteration` در ابتدای اجرا به دلیل وجود دستور `return` رخ می‌دهد. این استثنا به‌طور خودکار درون پوشش `list(...)` و حلقه `for` گرفته می‌شود. بنابراین، دو قطعه‌کد بالا منجر به یک لیست خالی می‌شوند. +- در حالت `some_func(3)`، استثنای `StopIteration` در ابتدای اجرا به دلیل وجود دستور `return` رخ می‌دهد. این استثنا به‌طور خودکار درون پوشش `list(...)` و حلقه `for` گرفته می‌شود. بنابراین، دو قطعه‌کد بالا منجر به یک لیست خالی می‌شوند. -+ برای اینکه مقدار `["wtf"]` را از ژنراتور `some_func` بگیریم، باید استثنای `StopIteration` را خودمان مدیریت کنیم، +- برای اینکه مقدار `["wtf"]` را از ژنراتور `some_func` بگیریم، باید استثنای `StopIteration` را خودمان مدیریت کنیم، ```py try: @@ -1818,8 +1866,6 @@ False True ``` - - #### 💡 توضیح: - در اینجا، `'inf'` و `'nan'` رشته‌هایی خاص هستند (نسبت به حروف بزرگ و کوچک حساس نیستند) که وقتی به‌طور صریح به نوع `float` تبدیل شوند، به ترتیب برای نمایش "بی‌نهایت" ریاضی و "عدد نیست" استفاده می‌شوند. @@ -1855,6 +1901,7 @@ another_tuple = ([1, 2], [3, 4], [5, 6]) ``` **خروجی:** + ```py >>> some_tuple[2] = "change this" TypeError: 'tuple' object does not support item assignment @@ -1871,14 +1918,13 @@ TypeError: 'tuple' object does not support item assignment #### 💡 توضیح: -* نقل‌قول از https://docs.python.org/3/reference/datamodel.html +- نقل‌قول از https://docs.python.org/3/reference/datamodel.html > دنباله‌های تغییرناپذیر شیئی از نوع دنباله‌ی تغییرناپذیر، پس از ایجاد دیگر قابل تغییر نیست. (اگر شیء شامل ارجاع‌هایی به اشیای دیگر باشد، این اشیای دیگر ممکن است قابل تغییر باشند و تغییر کنند؛ اما مجموعه‌ی اشیایی که مستقیماً توسط یک شیء تغییرناپذیر ارجاع داده می‌شوند، نمی‌تواند تغییر کند.) -* عملگر `+=` لیست را به‌صورت درجا (in-place) تغییر می‌دهد. تخصیص به یک عضو کار نمی‌کند، اما زمانی که استثنا ایجاد می‌شود، عضو موردنظر پیش از آن به‌صورت درجا تغییر کرده است. -* همچنین توضیحی در [پرسش‌های متداول رسمی پایتون](https://docs.python.org/3/faq/programming.html#why-does-a-tuple-i-item-raise-an-exception-when-the-addition-works) وجود دارد. - +- عملگر `+=` لیست را به‌صورت درجا (in-place) تغییر می‌دهد. تخصیص به یک عضو کار نمی‌کند، اما زمانی که استثنا ایجاد می‌شود، عضو موردنظر پیش از آن به‌صورت درجا تغییر کرده است. +- همچنین توضیحی در [پرسش‌های متداول رسمی پایتون](https://docs.python.org/3/faq/programming.html#why-does-a-tuple-i-item-raise-an-exception-when-the-addition-works) وجود دارد. --- @@ -1894,19 +1940,22 @@ except Exception as e: ``` **Output (Python 2.x):** + ```py >>> print(e) # چیزی چاپ نمی شود. ``` **Output (Python 3.x):** + ```py >>> print(e) NameError: name 'e' is not defined ``` #### 💡 توضیح: -* منبع: [مستندات رسمی پایتون](https://docs.python.org/3/reference/compound_stmts.html#except) + +- منبع: [مستندات رسمی پایتون](https://docs.python.org/3/reference/compound_stmts.html#except) هنگامی که یک استثنا (Exception) با استفاده از کلمه‌ی کلیدی `as` به متغیری تخصیص داده شود، این متغیر در انتهای بلاکِ `except` پاک می‌شود. این رفتار مشابه کد زیر است: @@ -1927,8 +1976,7 @@ NameError: name 'e' is not defined این بدان معناست که استثنا باید به نام دیگری انتساب داده شود تا بتوان پس از پایان بند `except` به آن ارجاع داد. استثناها پاک می‌شوند چون با داشتن «ردیابی» (traceback) ضمیمه‌شده، یک چرخه‌ی مرجع (reference cycle) با قاب پشته (stack frame) تشکیل می‌دهند که باعث می‌شود تمام متغیرهای محلی (locals) در آن قاب تا زمان پاکسازی حافظه (garbage collection) باقی بمانند. -* در پایتون، بندها (`clauses`) حوزه‌ی مستقل ندارند. در مثال بالا، همه‌چیز در یک حوزه‌ی واحد قرار دارد، و متغیر `e` در اثر اجرای بند `except` حذف می‌شود. این موضوع در مورد توابع صادق نیست، زیرا توابع حوزه‌های داخلی جداگانه‌ای دارند. مثال زیر این نکته را نشان می‌دهد: - +- در پایتون، بندها (`clauses`) حوزه‌ی مستقل ندارند. در مثال بالا، همه‌چیز در یک حوزه‌ی واحد قرار دارد، و متغیر `e` در اثر اجرای بند `except` حذف می‌شود. این موضوع در مورد توابع صادق نیست، زیرا توابع حوزه‌های داخلی جداگانه‌ای دارند. مثال زیر این نکته را نشان می‌دهد: ```py def f(x): @@ -1940,6 +1988,7 @@ NameError: name 'e' is not defined ``` **خروجی:** + ```py >>> f(x) UnboundLocalError: local variable 'x' referenced before assignment @@ -1951,9 +2000,10 @@ NameError: name 'e' is not defined [5, 4, 3] ``` -* در پایتون نسخه‌ی ۲.x، نام متغیر `e` به یک نمونه از `Exception()` انتساب داده می‌شود، بنابراین وقتی سعی کنید آن را چاپ کنید، چیزی نمایش داده نمی‌شود. +- در پایتون نسخه‌ی ۲.x، نام متغیر `e` به یک نمونه از `Exception()` انتساب داده می‌شود، بنابراین وقتی سعی کنید آن را چاپ کنید، چیزی نمایش داده نمی‌شود. **خروجی (Python 2.x):** + ```py >>> e Exception() @@ -1963,7 +2013,6 @@ NameError: name 'e' is not defined --- - ### ◀ تبدیل اسرارآمیز نوع کلید ```py @@ -1974,6 +2023,7 @@ some_dict = {'s': 42} ``` **خروجی:** + ```py >>> type(list(some_dict.keys())[0]) str @@ -1987,10 +2037,11 @@ str #### 💡 توضیح: -* هر دو شیء `s` و رشته‌ی `"s"` به دلیل ارث‌بری `SomeClass` از متد `__hash__` کلاس `str`، هش یکسانی دارند. -* عبارت `SomeClass("s") == "s"` به دلیل ارث‌بری `SomeClass` از متد `__eq__` کلاس `str` برابر با `True` ارزیابی می‌شود. -* از آنجا که این دو شیء هش یکسان و برابری دارند، به عنوان یک کلید مشترک در دیکشنری در نظر گرفته می‌شوند. -* برای رسیدن به رفتار دلخواه، می‌توانیم متد `__eq__` را در کلاس `SomeClass` بازتعریف کنیم. +- هر دو شیء `s` و رشته‌ی `"s"` به دلیل ارث‌بری `SomeClass` از متد `__hash__` کلاس `str`، هش یکسانی دارند. +- عبارت `SomeClass("s") == "s"` به دلیل ارث‌بری `SomeClass` از متد `__eq__` کلاس `str` برابر با `True` ارزیابی می‌شود. +- از آنجا که این دو شیء هش یکسان و برابری دارند، به عنوان یک کلید مشترک در دیکشنری در نظر گرفته می‌شوند. +- برای رسیدن به رفتار دلخواه، می‌توانیم متد `__eq__` را در کلاس `SomeClass` بازتعریف کنیم. + ```py class SomeClass(str): def __eq__(self, other): @@ -2008,6 +2059,7 @@ str ``` **خروجی:** + ```py >>> s = SomeClass('s') >>> some_dict[s] = 40 @@ -2027,6 +2079,7 @@ a, b = a[b] = {}, 5 ``` **خروجی:** + ```py >>> a {5: ({...}, 5)} @@ -2034,7 +2087,7 @@ a, b = a[b] = {}, 5 #### 💡 توضیح: -* طبق [مرجع زبان پایتون](https://docs.python.org/3/reference/simple_stmts.html#assignment-statements)، دستورات انتساب فرم زیر را دارند: +- طبق [مرجع زبان پایتون](https://docs.python.org/3/reference/simple_stmts.html#assignment-statements)، دستورات انتساب فرم زیر را دارند: ``` (target_list "=")+ (expression_list | yield_expression) @@ -2044,15 +2097,16 @@ a, b = a[b] = {}, 5 > یک دستور انتساب ابتدا فهرست عبارت‌ها (expression list) را ارزیابی می‌کند (توجه کنید این عبارت می‌تواند یک عبارت تکی یا فهرستی از عبارت‌ها جداشده با ویرگول باشد که دومی به یک تاپل منجر می‌شود)، سپس شیء حاصل را به هریک از اهداف انتساب از **چپ به راست** تخصیص می‌دهد. -* علامت `+` در `(target_list "=")+` به این معناست که می‌توان **یک یا چند** هدف انتساب داشت. در این حالت، اهداف انتساب ما `a, b` و `a[b]` هستند (توجه کنید که عبارت ارزیابی‌شده دقیقاً یکی است، که در اینجا `{}` و `5` است). +- علامت `+` در `(target_list "=")+` به این معناست که می‌توان **یک یا چند** هدف انتساب داشت. در این حالت، اهداف انتساب ما `a, b` و `a[b]` هستند (توجه کنید که عبارت ارزیابی‌شده دقیقاً یکی است، که در اینجا `{}` و `5` است). -* پس از ارزیابی عبارت، نتیجه از **چپ به راست** به اهداف انتساب داده می‌شود. در این مثال ابتدا تاپل `({}, 5)` به `a, b` باز می‌شود، بنابراین `a = {}` و `b = 5` خواهیم داشت. +- پس از ارزیابی عبارت، نتیجه از **چپ به راست** به اهداف انتساب داده می‌شود. در این مثال ابتدا تاپل `({}, 5)` به `a, b` باز می‌شود، بنابراین `a = {}` و `b = 5` خواهیم داشت. -* حالا `a` یک شیء قابل تغییر (mutable) است (`{}`). +- حالا `a` یک شیء قابل تغییر (mutable) است (`{}`). -* هدف انتساب بعدی `a[b]` است (شاید انتظار داشته باشید که اینجا خطا بگیریم زیرا پیش از این هیچ مقداری برای `a` و `b` مشخص نشده است؛ اما به یاد داشته باشید که در گام قبل به `a` مقدار `{}` و به `b` مقدار `5` دادیم). +- هدف انتساب بعدی `a[b]` است (شاید انتظار داشته باشید که اینجا خطا بگیریم زیرا پیش از این هیچ مقداری برای `a` و `b` مشخص نشده است؛ اما به یاد داشته باشید که در گام قبل به `a` مقدار `{}` و به `b` مقدار `5` دادیم). + +- اکنون، کلید `5` در دیکشنری به تاپل `({}, 5)` مقداردهی می‌شود و یک مرجع دوری (Circular Reference) ایجاد می‌کند (علامت `{...}` در خروجی به همان شیئی اشاره دارد که قبلاً توسط `a` به آن ارجاع داده شده است). یک مثال ساده‌تر از مرجع دوری می‌تواند به این صورت باشد: -* اکنون، کلید `5` در دیکشنری به تاپل `({}, 5)` مقداردهی می‌شود و یک مرجع دوری (Circular Reference) ایجاد می‌کند (علامت `{...}` در خروجی به همان شیئی اشاره دارد که قبلاً توسط `a` به آن ارجاع داده شده است). یک مثال ساده‌تر از مرجع دوری می‌تواند به این صورت باشد: ```py >>> some_list = some_list[0] = [0] >>> some_list @@ -2064,24 +2118,27 @@ a, b = a[b] = {}, 5 >>> some_list[0][0][0][0][0][0] == some_list True ``` + در مثال ما نیز شرایط مشابه است (`a[b][0]` همان شیئی است که `a` به آن اشاره دارد). +- بنابراین برای جمع‌بندی، می‌توانید مثال بالا را به این صورت ساده کنید: -* بنابراین برای جمع‌بندی، می‌توانید مثال بالا را به این صورت ساده کنید: ```py a, b = {}, 5 a[b] = a, b ``` + و مرجع دوری به این دلیل قابل توجیه است که `a[b][0]` همان شیئی است که `a` به آن اشاره دارد. + ```py >>> a[b][0] is a True ``` - --- ### ◀ از حد مجاز برای تبدیل رشته به عدد صحیح فراتر می‌رود + ```py >>> # Python 3.10.6 >>> int("2" * 5432) @@ -2091,6 +2148,7 @@ a, b = a[b] = {}, 5 ``` **خروجی:** + ```py >>> # Python 3.10.6 222222222222222222222222222222222222222222222222222222222222222... @@ -2104,6 +2162,7 @@ ValueError: Exceeds the limit (4300) for integer string conversion: ``` #### 💡 توضیح: + فراخوانی تابع `int()` در نسخه‌ی Python 3.10.6 به‌خوبی کار می‌کند اما در نسخه‌ی Python 3.10.8 منجر به خطای `ValueError` می‌شود. توجه کنید که پایتون همچنان قادر به کار با اعداد صحیح بزرگ است. این خطا تنها هنگام تبدیل اعداد صحیح به رشته یا برعکس رخ می‌دهد. خوشبختانه می‌توانید در صورت انتظار عبور از این حد مجاز، مقدار آن را افزایش دهید. برای انجام این کار می‌توانید از یکی از روش‌های زیر استفاده کنید: @@ -2114,10 +2173,8 @@ ValueError: Exceeds the limit (4300) for integer string conversion: برای جزئیات بیشتر درباره‌ی تغییر مقدار پیش‌فرض این حد مجاز، [مستندات رسمی پایتون](https://docs.python.org/3/library/stdtypes.html#int-max-str-digits) را مشاهده کنید. - --- - ## بخش: شیب‌های لغزنده ### ◀ تغییر یک دیکشنری هنگام پیمایش روی آن @@ -2168,6 +2225,7 @@ class SomeClass: **خروجی:** 1\. + ```py >>> x = SomeClass() >>> y = x @@ -2179,6 +2237,7 @@ Deleted! «خُب، بالاخره حذف شد.» احتمالاً حدس زده‌اید چه چیزی جلوی فراخوانی `__del__` را در اولین تلاشی که برای حذف `x` داشتیم، گرفته بود. بیایید مثال را پیچیده‌تر کنیم. 2\. + ```py >>> x = SomeClass() >>> y = x @@ -2194,6 +2253,7 @@ Deleted! «باشه، حالا حذف شد» :confused: #### 💡 توضیح: + - عبارت `del x` مستقیماً باعث فراخوانی `x.__del__()` نمی‌شود. - وقتی به دستور `del x` می‌رسیم، پایتون نام `x` را از حوزه‌ی فعلی حذف کرده و شمارنده‌ی مراجع شیٔ‌ای که `x` به آن اشاره می‌کرد را یک واحد کاهش می‌دهد. فقط وقتی شمارنده‌ی مراجع شیٔ به صفر برسد، تابع `__del__()` فراخوانی می‌شود. - در خروجی دوم، متد `__del__()` فراخوانی نشد چون دستور قبلی (`>>> y`) در مفسر تعاملی یک ارجاع دیگر به شیٔ ایجاد کرده بود (به صورت خاص، متغیر جادویی `_` به مقدار آخرین عبارت غیر `None` در REPL اشاره می‌کند). بنابراین مانع از رسیدن شمارنده‌ی مراجع به صفر در هنگام اجرای `del y` شد. @@ -2205,6 +2265,7 @@ Deleted! 1\. + ```py a = 1 def some_func(): @@ -2216,6 +2277,7 @@ def another_func(): ``` 2\. + ```py def some_closure_func(): a = 1 @@ -2232,6 +2294,7 @@ def another_closure_func(): ``` **خروجی:** + ```py >>> some_func() 1 @@ -2245,8 +2308,10 @@ UnboundLocalError: local variable 'a' referenced before assignment ``` #### 💡 توضیح: -* وقتی در محدوده (Scope) یک تابع به متغیری مقداردهی می‌کنید، آن متغیر در همان حوزه محلی تعریف می‌شود. بنابراین `a` در تابع `another_func` تبدیل به متغیر محلی می‌شود، اما پیش‌تر در همان حوزه مقداردهی نشده است، و این باعث خطا می‌شود. -* برای تغییر متغیر سراسری `a` در تابع `another_func`، باید از کلیدواژه‌ی `global` استفاده کنیم. + +- وقتی در محدوده (Scope) یک تابع به متغیری مقداردهی می‌کنید، آن متغیر در همان حوزه محلی تعریف می‌شود. بنابراین `a` در تابع `another_func` تبدیل به متغیر محلی می‌شود، اما پیش‌تر در همان حوزه مقداردهی نشده است، و این باعث خطا می‌شود. +- برای تغییر متغیر سراسری `a` در تابع `another_func`، باید از کلیدواژه‌ی `global` استفاده کنیم. + ```py def another_func() global a @@ -2255,12 +2320,15 @@ UnboundLocalError: local variable 'a' referenced before assignment ``` **خروجی:** + ```py >>> another_func() 2 ``` -* در تابع `another_closure_func`، متغیر `a` در حوزه‌ی `another_inner_func` محلی می‌شود ولی پیش‌تر در آن حوزه مقداردهی نشده است. به همین دلیل خطا می‌دهد. -* برای تغییر متغیر حوزه‌ی بیرونی `a` در `another_inner_func`، باید از کلیدواژه‌ی `nonlocal` استفاده کنیم. دستور `nonlocal` به مفسر می‌گوید که متغیر را در نزدیک‌ترین حوزه‌ی بیرونی (به‌جز حوزه‌ی global) جستجو کند. + +- در تابع `another_closure_func`، متغیر `a` در حوزه‌ی `another_inner_func` محلی می‌شود ولی پیش‌تر در آن حوزه مقداردهی نشده است. به همین دلیل خطا می‌دهد. +- برای تغییر متغیر حوزه‌ی بیرونی `a` در `another_inner_func`، باید از کلیدواژه‌ی `nonlocal` استفاده کنیم. دستور `nonlocal` به مفسر می‌گوید که متغیر را در نزدیک‌ترین حوزه‌ی بیرونی (به‌جز حوزه‌ی global) جستجو کند. + ```py def another_func(): a = 1 @@ -2272,12 +2340,14 @@ UnboundLocalError: local variable 'a' referenced before assignment ``` **خروجی:** + ```py >>> another_func() 2 ``` -* کلیدواژه‌های `global` و `nonlocal` به مفسر پایتون می‌گویند که متغیر جدیدی را تعریف نکند و به جای آن در حوزه‌های بیرونی (سراسری یا میانجی) آن را بیابد. -* برای مطالعه‌ی بیشتر در مورد نحوه‌ی کار فضای نام‌ها و مکانیزم تعیین حوزه‌ها در پایتون، می‌توانید این [مقاله کوتاه ولی عالی](https://sebastianraschka.com/Articles/2014_python_scope_and_namespaces.html) را بخوانید. + +- کلیدواژه‌های `global` و `nonlocal` به مفسر پایتون می‌گویند که متغیر جدیدی را تعریف نکند و به جای آن در حوزه‌های بیرونی (سراسری یا میانجی) آن را بیابد. +- برای مطالعه‌ی بیشتر در مورد نحوه‌ی کار فضای نام‌ها و مکانیزم تعیین حوزه‌ها در پایتون، می‌توانید این [مقاله کوتاه ولی عالی](https://sebastianraschka.com/Articles/2014_python_scope_and_namespaces.html) را بخوانید. --- @@ -2303,6 +2373,7 @@ for idx, item in enumerate(list_4): ``` **خروجی:** + ```py >>> list_1 [1, 2, 3, 4] @@ -2318,7 +2389,7 @@ for idx, item in enumerate(list_4): #### 💡 توضیح: -* هیچ‌وقت ایده‌ی خوبی نیست که شیئی را که روی آن پیمایش می‌کنید تغییر دهید. روش درست این است که روی یک کپی از آن شیء پیمایش کنید؛ در این‌جا `list_3[:]` دقیقاً همین کار را می‌کند. +- هیچ‌وقت ایده‌ی خوبی نیست که شیئی را که روی آن پیمایش می‌کنید تغییر دهید. روش درست این است که روی یک کپی از آن شیء پیمایش کنید؛ در این‌جا `list_3[:]` دقیقاً همین کار را می‌کند. ```py >>> some_list = [1, 2, 3, 4] @@ -2329,19 +2400,20 @@ for idx, item in enumerate(list_4): ``` **تفاوت بین `del`، `remove` و `pop`:** -* اینجا، `del var_name` فقط اتصال `var_name` را از فضای نام محلی یا سراسری حذف می‌کند (به همین دلیل است که `list_1` تحت تأثیر قرار نمی‌گیرد). -* متد `remove` اولین مقدار مطابق را حذف می‌کند، نه یک اندیس خاص را؛ اگر مقدار مورد نظر پیدا نشود، خطای `ValueError` ایجاد می‌شود. -* متد `pop` عنصری را در یک اندیس مشخص حذف کرده و آن را برمی‌گرداند؛ اگر اندیس نامعتبری مشخص شود، خطای `IndexError` ایجاد می‌شود. + +- اینجا، `del var_name` فقط اتصال `var_name` را از فضای نام محلی یا سراسری حذف می‌کند (به همین دلیل است که `list_1` تحت تأثیر قرار نمی‌گیرد). +- متد `remove` اولین مقدار مطابق را حذف می‌کند، نه یک اندیس خاص را؛ اگر مقدار مورد نظر پیدا نشود، خطای `ValueError` ایجاد می‌شود. +- متد `pop` عنصری را در یک اندیس مشخص حذف کرده و آن را برمی‌گرداند؛ اگر اندیس نامعتبری مشخص شود، خطای `IndexError` ایجاد می‌شود. **چرا خروجی `[2, 4]` است؟** + - پیمایش لیست به صورت اندیس به اندیس انجام می‌شود، و هنگامی که عدد `1` را از `list_2` یا `list_4` حذف می‌کنیم، محتوای لیست به `[2, 3, 4]` تغییر می‌کند. در این حالت عناصر باقی‌مانده به سمت چپ جابه‌جا شده و جایگاهشان تغییر می‌کند؛ یعنی عدد `2` در اندیس 0 و عدد `3` در اندیس 1 قرار می‌گیرد. از آنجا که در مرحله بعدی حلقه به سراغ اندیس 1 می‌رود (که اکنون مقدار آن `3` است)، عدد `2` به طور کامل نادیده گرفته می‌شود. این اتفاق مشابه برای هر عنصر یک‌درمیان در طول پیمایش لیست رخ خواهد داد. -* برای توضیح بیشتر این مثال، این [تاپیک StackOverflow](https://stackoverflow.com/questions/45946228/what-happens-when-you-try-to-delete-a-list-element-while-iterating-over-it) را ببینید. -* همچنین برای نمونه مشابهی مربوط به دیکشنری‌ها در پایتون، این [تاپیک مفید StackOverflow](https://stackoverflow.com/questions/45877614/how-to-change-all-the-dictionary-keys-in-a-for-loop-with-d-items) را ببینید. +- برای توضیح بیشتر این مثال، این [تاپیک StackOverflow](https://stackoverflow.com/questions/45946228/what-happens-when-you-try-to-delete-a-list-element-while-iterating-over-it) را ببینید. +- همچنین برای نمونه مشابهی مربوط به دیکشنری‌ها در پایتون، این [تاپیک مفید StackOverflow](https://stackoverflow.com/questions/45877614/how-to-change-all-the-dictionary-keys-in-a-for-loop-with-d-items) را ببینید. --- - ### ◀ زیپِ دارای اتلاف برای پیمایشگرها * @@ -2359,6 +2431,7 @@ for idx, item in enumerate(list_4): >>> list(zip(numbers_iter, remaining)) [(4, 3), (5, 4), (6, 5)] ``` + عنصر `3` از لیست `numbers` چه شد؟ #### 💡 توضیح: @@ -2398,6 +2471,7 @@ for idx, item in enumerate(list_4): ### ◀ نشت کردن متغیرهای حلقه! 1\. + ```py for x in range(7): if x == 6: @@ -2406,6 +2480,7 @@ print(x, ': x in global') ``` **خروجی:** + ```py 6 : for x inside loop 6 : x in global @@ -2414,6 +2489,7 @@ print(x, ': x in global') اما متغیر `x` هرگز خارج از محدوده (scope) حلقه `for` تعریف نشده بود... 2\. + ```py # این دفعه، مقدار ایکس را در ابتدا مقداردهی اولیه میکنیم. x = -1 @@ -2424,6 +2500,7 @@ print(x, ': x in global') ``` **خروجی:** + ```py 6 : for x inside loop 6 : x in global @@ -2432,6 +2509,7 @@ print(x, ': x in global') 3\. **خروجی (Python 2.x):** + ```py >>> x = 1 >>> print([x for x in range(5)]) @@ -2441,6 +2519,7 @@ print(x, ': x in global') ``` **خروجی (Python 3.x):** + ```py >>> x = 1 >>> print([x for x in range(5)]) @@ -2469,6 +2548,7 @@ def some_func(default_arg=[]): ``` **خروجی:** + ```py >>> some_func() ['some_string'] @@ -2491,6 +2571,7 @@ def some_func(default_arg=[]): ``` **خروجی:** + ```py >>> some_func.__defaults__ # مقادیر پیشفرض این تابع را نمایش می دهد. ([],) @@ -2535,6 +2616,7 @@ except IndexError, ValueError: ``` **خروجی (Python 2.x):** + ```py Caught! @@ -2542,6 +2624,7 @@ ValueError: list.remove(x): x not in list ``` **خروجی (Python 3.x):** + ```py File "", line 3 except IndexError, ValueError: @@ -2551,7 +2634,7 @@ SyntaxError: invalid syntax #### 💡 توضیح -* برای افزودن چندین استثنا به عبارت `except`، باید آن‌ها را به صورت یک تاپل پرانتزدار به عنوان آرگومان اول وارد کنید. آرگومان دوم یک نام اختیاری است که در صورت ارائه، نمونهٔ Exception ایجادشده را به آن متصل می‌کند. برای مثال: +- برای افزودن چندین استثنا به عبارت `except`، باید آن‌ها را به صورت یک تاپل پرانتزدار به عنوان آرگومان اول وارد کنید. آرگومان دوم یک نام اختیاری است که در صورت ارائه، نمونهٔ Exception ایجادشده را به آن متصل می‌کند. برای مثال: ```py some_list = [1, 2, 3] @@ -2579,7 +2662,7 @@ SyntaxError: invalid syntax IndentationError: unindent does not match any outer indentation level ``` -* جدا کردن استثنا از متغیر با استفاده از ویرگول منسوخ شده و در پایتون 3 کار نمی‌کند؛ روش صحیح استفاده از `as` است. برای مثال: +- جدا کردن استثنا از متغیر با استفاده از ویرگول منسوخ شده و در پایتون 3 کار نمی‌کند؛ روش صحیح استفاده از `as` است. برای مثال: ```py some_list = [1, 2, 3] @@ -2603,6 +2686,7 @@ SyntaxError: invalid syntax ### ◀ عملوندهای یکسان، داستانی متفاوت! 1\. + ```py a = [1, 2, 3, 4] b = a @@ -2610,6 +2694,7 @@ a = a + [5, 6, 7, 8] ``` **خروجی:** + ```py >>> a [1, 2, 3, 4, 5, 6, 7, 8] @@ -2618,6 +2703,7 @@ a = a + [5, 6, 7, 8] ``` 2\. + ```py a = [1, 2, 3, 4] b = a @@ -2625,6 +2711,7 @@ a += [5, 6, 7, 8] ``` **خروجی:** + ```py >>> a [1, 2, 3, 4, 5, 6, 7, 8] @@ -2633,17 +2720,19 @@ a += [5, 6, 7, 8] ``` #### 💡 توضیح: -* عملگر `a += b` همیشه همانند `a = a + b` رفتار نمی‌کند. کلاس‌ها *ممکن است* عملگرهای *`op=`* را به گونه‌ای متفاوت پیاده‌سازی کنند، و لیست‌ها نیز چنین می‌کنند. -* عبارت `a = a + [5,6,7,8]` یک لیست جدید ایجاد می‌کند و مرجع `a` را به این لیست جدید اختصاص می‌دهد، بدون آنکه `b` را تغییر دهد. +- عملگر `a += b` همیشه همانند `a = a + b` رفتار نمی‌کند. کلاس‌ها *ممکن است* عملگرهای *`op=`* را به گونه‌ای متفاوت پیاده‌سازی کنند، و لیست‌ها نیز چنین می‌کنند. -* عبارت `a += [5,6,7,8]` در واقع به تابعی معادل «extend» ترجمه می‌شود که روی لیست اصلی عمل می‌کند؛ بنابراین `a` و `b` همچنان به همان لیست اشاره می‌کنند که به‌صورت درجا (in-place) تغییر کرده است. +- عبارت `a = a + [5,6,7,8]` یک لیست جدید ایجاد می‌کند و مرجع `a` را به این لیست جدید اختصاص می‌دهد، بدون آنکه `b` را تغییر دهد. + +- عبارت `a += [5,6,7,8]` در واقع به تابعی معادل «extend» ترجمه می‌شود که روی لیست اصلی عمل می‌کند؛ بنابراین `a` و `b` همچنان به همان لیست اشاره می‌کنند که به‌صورت درجا (in-place) تغییر کرده است. --- ### ◀ تفکیک نام‌ها با نادیده گرفتن حوزه‌ی کلاس 1\. + ```py x = 5 class SomeClass: @@ -2652,12 +2741,14 @@ class SomeClass: ``` **خروجی:** + ```py >>> list(SomeClass.y)[0] 5 ``` 2\. + ```py x = 5 class SomeClass: @@ -2666,18 +2757,21 @@ class SomeClass: ``` **خروجی (Python 2.x):** + ```py >>> SomeClass.y[0] 17 ``` **خروجی (Python 3.x):** + ```py >>> SomeClass.y[0] 5 ``` #### 💡 توضیح + - حوزه‌هایی که درون تعریف کلاس تو در تو هستند، نام‌های تعریف‌شده در سطح کلاس را نادیده می‌گیرند. - عبارت‌های جنراتور (generator expressions) حوزه‌ی مختص به خود دارند. - از پایتون نسخه‌ی ۳ به بعد، لیست‌های فشرده (list comprehensions) نیز حوزه‌ی مختص به خود دارند. @@ -2687,6 +2781,7 @@ class SomeClass: ### ◀ گرد کردن به روش بانکدار * بیایید یک تابع ساده برای به‌دست‌آوردن عنصر میانی یک لیست پیاده‌سازی کنیم: + ```py def get_middle(some_list): mid_index = round(len(some_list) / 2) @@ -2694,6 +2789,7 @@ def get_middle(some_list): ``` **Python 3.x:** + ```py >>> get_middle([1]) # خوب به نظر می رسد. 1 @@ -2706,6 +2802,7 @@ def get_middle(some_list): >>> round(len([1,2,3,4,5]) / 2) # چرا? 2 ``` + به نظر می‌رسد که پایتون عدد ۲٫۵ را به ۲ گرد کرده است. #### 💡 توضیح: @@ -2869,21 +2966,23 @@ def similar_recursive_func(a): ``` #### 💡 توضیح: -* برای مورد ۱، عبارت صحیح برای رفتار مورد انتظار این است: + +- برای مورد ۱، عبارت صحیح برای رفتار مورد انتظار این است: `x, y = (0, 1) if True else (None, None)` -* برای مورد ۲، عبارت صحیح برای رفتار مورد انتظار این است: +- برای مورد ۲، عبارت صحیح برای رفتار مورد انتظار این است: اینجا، `t = ('one',)` یا `t = 'one',` (ویرگول از قلم افتاده است). در غیر این صورت مفسر `t` را به عنوان یک `str` در نظر گرفته و به صورت کاراکتر به کاراکتر روی آن پیمایش می‌کند. -* علامت `()` یک توکن خاص است و نشان‌دهنده‌ی یک `tuple` خالی است. +- علامت `()` یک توکن خاص است و نشان‌دهنده‌ی یک `tuple` خالی است. + +- در مورد ۳، همان‌طور که احتمالاً متوجه شدید، بعد از عنصر پنجم (`"that"`) یک ویرگول از قلم افتاده است. بنابراین با الحاق ضمنی رشته‌ها، -* در مورد ۳، همان‌طور که احتمالاً متوجه شدید، بعد از عنصر پنجم (`"that"`) یک ویرگول از قلم افتاده است. بنابراین با الحاق ضمنی رشته‌ها، ```py >>> ten_words_list ['some', 'very', 'big', 'list', 'thatconsists', 'of', 'exactly', 'ten', 'words'] ``` -* در قطعه‌ی چهارم هیچ `AssertionError`ای رخ نداد؛ زیرا به جای ارزیابی عبارت تکی `a == b`، کل یک تاپل ارزیابی شده است. قطعه‌ی کد زیر این موضوع را روشن‌تر می‌کند: +- در قطعه‌ی چهارم هیچ `AssertionError`ای رخ نداد؛ زیرا به جای ارزیابی عبارت تکی `a == b`، کل یک تاپل ارزیابی شده است. قطعه‌ی کد زیر این موضوع را روشن‌تر می‌کند: ```py >>> a = "python" @@ -2902,15 +3001,14 @@ def similar_recursive_func(a): AssertionError: Values are not equal ``` -* در قطعه‌ی پنجم، بیشتر متدهایی که اشیای ترتیبی (Sequence) یا نگاشت‌ها (Mapping) را تغییر می‌دهند (مانند `list.append`، `dict.update`، `list.sort` و غیره)، شیء اصلی را به‌صورت درجا (in-place) تغییر داده و مقدار `None` برمی‌گردانند. منطق پشت این تصمیم، بهبود عملکرد با جلوگیری از کپی کردن شیء است (به این [منبع](https://docs.python.org/3/faq/design.html#why-doesn-t-list-sort-return-the-sorted-list) مراجعه کنید). +- در قطعه‌ی پنجم، بیشتر متدهایی که اشیای ترتیبی (Sequence) یا نگاشت‌ها (Mapping) را تغییر می‌دهند (مانند `list.append`، `dict.update`، `list.sort` و غیره)، شیء اصلی را به‌صورت درجا (in-place) تغییر داده و مقدار `None` برمی‌گردانند. منطق پشت این تصمیم، بهبود عملکرد با جلوگیری از کپی کردن شیء است (به این [منبع](https://docs.python.org/3/faq/design.html#why-doesn-t-list-sort-return-the-sorted-list) مراجعه کنید). -* قطعه‌ی آخر نیز نسبتاً واضح است؛ شیء تغییرپذیر (mutable)، مثل `list`، می‌تواند در داخل تابع تغییر کند، درحالی‌که انتساب دوباره‌ی یک شیء تغییرناپذیر (مانند `a -= 1`) باعث تغییر مقدار اصلی آن نخواهد شد. +- قطعه‌ی آخر نیز نسبتاً واضح است؛ شیء تغییرپذیر (mutable)، مثل `list`، می‌تواند در داخل تابع تغییر کند، درحالی‌که انتساب دوباره‌ی یک شیء تغییرناپذیر (مانند `a -= 1`) باعث تغییر مقدار اصلی آن نخواهد شد. -* آگاهی از این نکات ظریف در بلندمدت می‌تواند ساعت‌ها از زمان شما برای رفع اشکال را صرفه‌جویی کند. +- آگاهی از این نکات ظریف در بلندمدت می‌تواند ساعت‌ها از زمان شما برای رفع اشکال را صرفه‌جویی کند. --- - ### ◀ تقسیم‌ها * ```py @@ -2979,12 +3077,15 @@ NameError: name '_another_weird_name_func' is not defined - اغلب توصیه می‌شود از واردسازی عمومی (wildcard imports) استفاده نکنید. اولین دلیل واضح آن این است که در این نوع واردسازی‌ها، اسامی که با زیرخط (`_`) شروع شوند، وارد نمی‌شوند. این مسئله ممکن است در زمان اجرا به خطا منجر شود. - اگر از ساختار `from ... import a, b, c` استفاده کنیم، خطای `NameError` فوق اتفاق نمی‌افتاد. + ```py >>> from module import some_weird_name_func_, _another_weird_name_func >>> _another_weird_name_func() works! ``` + - اگر واقعاً تمایل دارید از واردسازی عمومی استفاده کنید، لازم است فهرستی به نام `__all__` را در ماژول خود تعریف کنید که شامل نام اشیاء عمومی (public) قابل‌دسترس هنگام واردسازی عمومی است. + ```py __all__ = ['_another_weird_name_func'] @@ -2994,6 +3095,7 @@ NameError: name '_another_weird_name_func' is not defined def _another_weird_name_func(): print("works!") ``` + **خروجی** ```py @@ -3034,6 +3136,7 @@ False >>> type(x), type(sorted(x)) (tuple, list) ``` + - برخلاف متد `sorted`، متد `reversed` یک تکرارکننده (iterator) برمی‌گرداند. چرا؟ زیرا مرتب‌سازی نیاز به تغییر درجا (in-place) یا استفاده از ظرف جانبی (مانند یک لیست اضافی) دارد، در حالی که معکوس کردن می‌تواند به‌سادگی با پیمایش از اندیس آخر به اول انجام شود. - بنابراین در مقایسه‌ی `sorted(y) == sorted(y)`، فراخوانی اولِ `sorted()` تمام عناصرِ تکرارکننده‌ی `y` را مصرف می‌کند، و فراخوانی بعدی یک لیست خالی برمی‌گرداند. @@ -3070,6 +3173,7 @@ if noon_time: ```py ('Time at noon is', datetime.time(12, 0)) ``` + زمان نیمه‌شب چاپ نمی‌شود. #### 💡 توضیح: @@ -3079,8 +3183,6 @@ if noon_time: --- --- - - ## بخش: گنجینه‌های پنهان! این بخش شامل چند مورد جالب و کمتر شناخته‌شده درباره‌ی پایتون است که بیشتر مبتدی‌هایی مثل من از آن بی‌خبرند (البته دیگر اینطور نیست). @@ -3097,9 +3199,10 @@ import antigravity Sshh... It's a super-secret. #### 💡 توضیح: -+ ماژول `antigravity` یکی از معدود ایستر اِگ‌هایی است که توسط توسعه‌دهندگان پایتون ارائه شده است. -+ دستور `import antigravity` باعث می‌شود مرورگر وب به سمت [کمیک کلاسیک XKCD](https://xkcd.com/353/) در مورد پایتون باز شود. -+ البته موضوع عمیق‌تر است؛ در واقع یک **ایستر اگ دیگر داخل این ایستر اگ** وجود دارد. اگر به [کد منبع](https://github.com/python/cpython/blob/master/Lib/antigravity.py#L7-L17) نگاه کنید، یک تابع تعریف شده که ادعا می‌کند [الگوریتم جئوهشینگ XKCD](https://xkcd.com/426/) را پیاده‌سازی کرده است. + +- ماژول `antigravity` یکی از معدود ایستر اِگ‌هایی است که توسط توسعه‌دهندگان پایتون ارائه شده است. +- دستور `import antigravity` باعث می‌شود مرورگر وب به سمت [کمیک کلاسیک XKCD](https://xkcd.com/353/) در مورد پایتون باز شود. +- البته موضوع عمیق‌تر است؛ در واقع یک **ایستر اگ دیگر داخل این ایستر اگ** وجود دارد. اگر به [کد منبع](https://github.com/python/cpython/blob/master/Lib/antigravity.py#L7-L17) نگاه کنید، یک تابع تعریف شده که ادعا می‌کند [الگوریتم جئوهشینگ XKCD](https://xkcd.com/426/) را پیاده‌سازی کرده است. --- @@ -3119,6 +3222,7 @@ print("Freedom!") ``` **خروجی (پایتون ۲.۳):** + ```py I am trapped, please rescue! I am trapped, please rescue! @@ -3126,6 +3230,7 @@ Freedom! ``` #### 💡 توضیح: + - نسخه‌ی قابل استفاده‌ای از `goto` در پایتون به عنوان یک شوخی [در اول آوریل ۲۰۰۴ معرفی شد](https://mail.python.org/pipermail/python-announce-list/2004-April/002982.html). - نسخه‌های فعلی پایتون فاقد این ماژول هستند. - اگرچه این ماژول واقعاً کار می‌کند، ولی لطفاً از آن استفاده نکنید. در [این صفحه](https://docs.python.org/3/faq/design.html#why-is-there-no-goto) می‌توانید دلیل عدم حضور دستور `goto` در پایتون را مطالعه کنید. @@ -3141,6 +3246,7 @@ from __future__ import braces ``` **خروجی:** + ```py File "some_file.py", line 1 from __future__ import braces @@ -3150,16 +3256,18 @@ SyntaxError: not a chance آکولاد؟ هرگز! اگر از این بابت ناامید شدید، بهتر است از جاوا استفاده کنید. خب، یک چیز شگفت‌آور دیگر؛ آیا می‌توانید تشخیص دهید که ارور `SyntaxError` در کجای کد ماژول `__future__` [اینجا](https://github.com/python/cpython/blob/master/Lib/__future__.py) ایجاد می‌شود؟ #### 💡 توضیح: -+ ماژول `__future__` معمولاً برای ارائه قابلیت‌هایی از نسخه‌های آینده پایتون به کار می‌رود. اما کلمه «future» (آینده) در این زمینه خاص، حالت طنز و کنایه دارد. -+ این مورد یک «ایستر اگ» (easter egg) است که به احساسات جامعه برنامه‌نویسان پایتون در این خصوص اشاره دارد. -+ کد مربوط به این موضوع در واقع [اینجا](https://github.com/python/cpython/blob/025eb98dc0c1dc27404df6c544fc2944e0fa9f3a/Python/future.c#L49) در فایل `future.c` قرار دارد. -+ زمانی که کامپایلر CPython با یک [عبارت future](https://docs.python.org/3.3/reference/simple_stmts.html#future-statements) مواجه می‌شود، ابتدا کد مرتبط در `future.c` را اجرا کرده و سپس آن را همانند یک دستور ایمپورت عادی در نظر می‌گیرد. + +- ماژول `__future__` معمولاً برای ارائه قابلیت‌هایی از نسخه‌های آینده پایتون به کار می‌رود. اما کلمه «future» (آینده) در این زمینه خاص، حالت طنز و کنایه دارد. +- این مورد یک «ایستر اگ» (easter egg) است که به احساسات جامعه برنامه‌نویسان پایتون در این خصوص اشاره دارد. +- کد مربوط به این موضوع در واقع [اینجا](https://github.com/python/cpython/blob/025eb98dc0c1dc27404df6c544fc2944e0fa9f3a/Python/future.c#L49) در فایل `future.c` قرار دارد. +- زمانی که کامپایلر CPython با یک [عبارت future](https://docs.python.org/3.3/reference/simple_stmts.html#future-statements) مواجه می‌شود، ابتدا کد مرتبط در `future.c` را اجرا کرده و سپس آن را همانند یک دستور ایمپورت عادی در نظر می‌گیرد. --- ### ◀ بیایید با «عمو زبان مهربان برای همیشه» آشنا شویم **خروجی (Python 3.x)** + ```py >>> from __future__ import barry_as_FLUFL >>> "Ruby" != "Python" # شکی در این نیست. @@ -3175,6 +3283,7 @@ True حالا می‌رسیم به اصل ماجرا. #### 💡 توضیح: + - این مورد مربوط به [PEP-401](https://www.python.org/dev/peps/pep-0401/) است که در تاریخ ۱ آوریل ۲۰۰۹ منتشر شد (اکنون می‌دانید این یعنی چه!). - نقل قولی از PEP-401: @@ -3199,6 +3308,7 @@ import this صبر کن، **این** چیه؟ `this` عشقه :heart: **خروجی:** + ``` The Zen of Python, by Tim Peters @@ -3241,9 +3351,9 @@ True #### 💡 توضیح: -* ماژول `this` در پایتون، یک ایستر اگ برای «ذنِ پایتون» ([PEP 20](https://www.python.org/dev/peps/pep-0020)) است. -* اگر این موضوع به‌اندازه کافی جالب است، حتماً پیاده‌سازی [this.py](https://hg.python.org/cpython/file/c3896275c0f6/Lib/this.py) را ببینید. نکته جالب این است که **کد مربوط به ذنِ پایتون، خودش اصول ذن را نقض کرده است** (و احتمالاً این تنها جایی است که چنین اتفاقی می‌افتد). -* درباره جمله `love is not True or False; love is love`، اگرچه طعنه‌آمیز است، اما خود گویاست. (اگر واضح نیست، لطفاً مثال‌های مربوط به عملگرهای `is` و `is not` را مشاهده کنید.) +- ماژول `this` در پایتون، یک ایستر اگ برای «ذنِ پایتون» ([PEP 20](https://www.python.org/dev/peps/pep-0020)) است. +- اگر این موضوع به‌اندازه کافی جالب است، حتماً پیاده‌سازی [this.py](https://hg.python.org/cpython/file/c3896275c0f6/Lib/this.py) را ببینید. نکته جالب این است که **کد مربوط به ذنِ پایتون، خودش اصول ذن را نقض کرده است** (و احتمالاً این تنها جایی است که چنین اتفاقی می‌افتد). +- درباره جمله `love is not True or False; love is love`، اگرچه طعنه‌آمیز است، اما خود گویاست. (اگر واضح نیست، لطفاً مثال‌های مربوط به عملگرهای `is` و `is not` را مشاهده کنید.) --- @@ -3262,6 +3372,7 @@ True ``` **خروجی:** + ```py >>> some_list = [1, 2, 3, 4, 5] >>> does_exists_num(some_list, 4) @@ -3282,15 +3393,18 @@ else: ``` **خروجی:** + ```py Try block executed successfully... ``` #### 💡 توضیح: + - عبارت `else` بعد از حلقه‌ها تنها زمانی اجرا می‌شود که در هیچ‌کدام از تکرارها (`iterations`) از دستور `break` استفاده نشده باشد. می‌توانید آن را به عنوان یک شرط «بدون شکست» (nobreak) در نظر بگیرید. - عبارت `else` پس از بلاک `try` به عنوان «عبارت تکمیل» (`completion clause`) نیز شناخته می‌شود؛ چراکه رسیدن به عبارت `else` در ساختار `try` به این معنی است که بلاک `try` بدون رخ دادن استثنا با موفقیت تکمیل شده است. --- + ### ◀ عملگر Ellipsis * ```py @@ -3299,6 +3413,7 @@ def some_func(): ``` **خروجی** + ```py >>> some_func() # بدون خروجی و بدون خطا @@ -3313,14 +3428,17 @@ Ellipsis ``` #### 💡توضیح + - در پایتون، `Ellipsis` یک شیء درونی (`built-in`) است که به صورت سراسری (`global`) در دسترس است و معادل `...` است. + ```py >>> ... Ellipsis ``` + - عملگر `Ellipsis` می‌تواند برای چندین منظور استفاده شود: - + به عنوان یک نگه‌دارنده برای کدی که هنوز نوشته نشده است (مانند دستور `pass`) - + در سینتکس برش (`slicing`) برای نمایش برش کامل در ابعاد باقی‌مانده + - به عنوان یک نگه‌دارنده برای کدی که هنوز نوشته نشده است (مانند دستور `pass`) + - در سینتکس برش (`slicing`) برای نمایش برش کامل در ابعاد باقی‌مانده ```py >>> import numpy as np @@ -3337,7 +3455,9 @@ Ellipsis ] ]) ``` + بنابراین، آرایه‌ی `three_dimensional_array` ما، آرایه‌ای از آرایه‌ها از آرایه‌ها است. فرض کنیم می‌خواهیم عنصر دوم (اندیس `1`) از تمامی آرایه‌های درونی را چاپ کنیم؛ در این حالت می‌توانیم از `Ellipsis` برای عبور از تمامی ابعاد قبلی استفاده کنیم: + ```py >>> three_dimensional_array[:,:,1] array([[1, 3], @@ -3346,10 +3466,10 @@ Ellipsis array([[1, 3], [5, 7]]) ``` - نکته: این روش برای آرایه‌هایی با هر تعداد بُعد کار می‌کند. حتی می‌توانید از برش (`slice`) در بُعد اول و آخر استفاده کرده و ابعاد میانی را نادیده بگیرید (به صورت `n_dimensional_array[first_dim_slice, ..., last_dim_slice]`). - + در [نوع‌دهی (`type hinting`)](https://docs.python.org/3/library/typing.html) برای اشاره به بخشی از نوع (مانند `Callable[..., int]` یا `Tuple[str, ...]`) استفاده می‌شود. - + همچنین می‌توانید از `Ellipsis` به عنوان آرگومان پیش‌فرض تابع استفاده کنید (برای مواردی که می‌خواهید میان «آرگومانی ارسال نشده است» و «مقدار `None` ارسال شده است» تمایز قائل شوید). + نکته: این روش برای آرایه‌هایی با هر تعداد بُعد کار می‌کند. حتی می‌توانید از برش (`slice`) در بُعد اول و آخر استفاده کرده و ابعاد میانی را نادیده بگیرید (به صورت `n_dimensional_array[first_dim_slice, ..., last_dim_slice]`). + - در [نوع‌دهی (`type hinting`)](https://docs.python.org/3/library/typing.html) برای اشاره به بخشی از نوع (مانند `Callable[..., int]` یا `Tuple[str, ...]`) استفاده می‌شود. + - همچنین می‌توانید از `Ellipsis` به عنوان آرگومان پیش‌فرض تابع استفاده کنید (برای مواردی که می‌خواهید میان «آرگومانی ارسال نشده است» و «مقدار `None` ارسال شده است» تمایز قائل شوید). --- @@ -3358,6 +3478,7 @@ Ellipsis این املای کلمه تعمداً به همین شکل نوشته شده است. لطفاً برای اصلاح آن درخواست (`patch`) ارسال نکنید. **خروجی (پایتون 3.x):** + ```py >>> infinity = float('infinity') >>> hash(infinity) @@ -3367,6 +3488,7 @@ Ellipsis ``` #### 💡 توضیح: + - هش (`hash`) مقدار بی‌نهایت برابر با 10⁵ × π است. - نکته جالب اینکه در پایتون ۳ هشِ مقدار `float('-inf')` برابر با «-10⁵ × π» است، در حالی که در پایتون ۲ برابر با «-10⁵ × e» است. @@ -3375,6 +3497,7 @@ Ellipsis ### ◀ بیایید خرابکاری کنیم 1\. + ```py class Yo(object): def __init__(self): @@ -3383,6 +3506,7 @@ class Yo(object): ``` **خروجی:** + ```py >>> Yo().bro True @@ -3393,6 +3517,7 @@ True ``` 2\. + ```py class Yo(object): def __init__(self): @@ -3402,6 +3527,7 @@ class Yo(object): ``` **خروجی:** + ```py >>> Yo().bro True @@ -3425,6 +3551,7 @@ class A(object): ``` **خروجی:** + ```py >>> A().__variable Traceback (most recent call last): @@ -3435,15 +3562,14 @@ AttributeError: 'A' object has no attribute '__variable' 'Some value' ``` - #### 💡 توضیح: -* [تغییر نام](https://en.wikipedia.org/wiki/Name_mangling) برای جلوگیری از برخورد نام‌ها بین فضاهای نام مختلف استفاده می‌شود. -* در پایتون، مفسر نام‌های اعضای کلاس که با `__` (دو آندرلاین که به عنوان "دندر" شناخته می‌شود) شروع می‌شوند و بیش از یک آندرلاین انتهایی ندارند را با اضافه کردن `_NameOfTheClass` در ابتدای آنها تغییر می‌دهد. -* بنابراین، برای دسترسی به ویژگی `__honey` در اولین قطعه کد، مجبور بودیم `_Yo` را به ابتدای آن اضافه کنیم، که از بروز تعارض با ویژگی با همان نام تعریف‌شده در هر کلاس دیگری جلوگیری می‌کند. -* اما چرا در دومین قطعه کد کار نکرد؟ زیرا تغییر نام، نام‌هایی که با دو آندرلاین خاتمه می‌یابند را شامل نمی‌شود. -* قطعه سوم نیز نتیجه تغییر نام بود. نام `__variable` در عبارت `return __variable` به `_A__variable` تغییر یافت، که همچنین همان نام متغیری است که در محدوده بیرونی تعریف کرده بودیم. -* همچنین، اگر نام تغییر یافته بیش از ۲۵۵ کاراکتر باشد، برش داده می‌شود. +- [تغییر نام](https://en.wikipedia.org/wiki/Name_mangling) برای جلوگیری از برخورد نام‌ها بین فضاهای نام مختلف استفاده می‌شود. +- در پایتون، مفسر نام‌های اعضای کلاس که با `__` (دو آندرلاین که به عنوان "دندر" شناخته می‌شود) شروع می‌شوند و بیش از یک آندرلاین انتهایی ندارند را با اضافه کردن `_NameOfTheClass` در ابتدای آنها تغییر می‌دهد. +- بنابراین، برای دسترسی به ویژگی `__honey` در اولین قطعه کد، مجبور بودیم `_Yo` را به ابتدای آن اضافه کنیم، که از بروز تعارض با ویژگی با همان نام تعریف‌شده در هر کلاس دیگری جلوگیری می‌کند. +- اما چرا در دومین قطعه کد کار نکرد؟ زیرا تغییر نام، نام‌هایی که با دو آندرلاین خاتمه می‌یابند را شامل نمی‌شود. +- قطعه سوم نیز نتیجه تغییر نام بود. نام `__variable` در عبارت `return __variable` به `_A__variable` تغییر یافت، که همچنین همان نام متغیری است که در محدوده بیرونی تعریف کرده بودیم. +- همچنین، اگر نام تغییر یافته بیش از ۲۵۵ کاراکتر باشد، برش داده می‌شود. --- --- @@ -3453,6 +3579,7 @@ AttributeError: 'A' object has no attribute '__variable' ### ◀ خطوط را رد می‌کند؟ **خروجی:** + ```py >>> value = 11 >>> valuе = 32 @@ -3504,6 +3631,7 @@ def energy_receive(): ``` **خروجی:** + ```py >>> energy_send(123.456) >>> energy_receive() @@ -3514,8 +3642,8 @@ def energy_receive(): #### 💡 توضیح: -* توجه کنید که آرایه‌ی numpy ایجادشده در تابع `energy_send` برگردانده نشده است، بنابراین فضای حافظه‌ی آن آزاد شده و مجدداً قابل استفاده است. -* تابع `numpy.empty()` نزدیک‌ترین فضای حافظه‌ی آزاد را بدون مقداردهی مجدد برمی‌گرداند. این فضای حافظه معمولاً همان فضایی است که به‌تازگی آزاد شده است (البته معمولاً این اتفاق می‌افتد و نه همیشه). +- توجه کنید که آرایه‌ی numpy ایجادشده در تابع `energy_send` برگردانده نشده است، بنابراین فضای حافظه‌ی آن آزاد شده و مجدداً قابل استفاده است. +- تابع `numpy.empty()` نزدیک‌ترین فضای حافظه‌ی آزاد را بدون مقداردهی مجدد برمی‌گرداند. این فضای حافظه معمولاً همان فضایی است که به‌تازگی آزاد شده است (البته معمولاً این اتفاق می‌افتد و نه همیشه). --- @@ -3545,12 +3673,12 @@ def square(x): #### 💡 توضیح -* **تب‌ها و فاصله‌ها (space) را با هم ترکیب نکنید!** کاراکتری که دقیقاً قبل از دستور return آمده یک «تب» است، در حالی که در بقیۀ مثال، کد با مضربی از «۴ فاصله» تورفتگی دارد. -* نحوۀ برخورد پایتون با تب‌ها به این صورت است: +- **تب‌ها و فاصله‌ها (space) را با هم ترکیب نکنید!** کاراکتری که دقیقاً قبل از دستور return آمده یک «تب» است، در حالی که در بقیۀ مثال، کد با مضربی از «۴ فاصله» تورفتگی دارد. +- نحوۀ برخورد پایتون با تب‌ها به این صورت است: > ابتدا تب‌ها (از چپ به راست) با یک تا هشت فاصله جایگزین می‌شوند به‌طوری که تعداد کل کاراکترها تا انتهای آن جایگزینی، مضربی از هشت باشد <...> -* بنابراین «تب» در آخرین خط تابع `square` با هشت فاصله جایگزین شده و به همین دلیل داخل حلقه قرار می‌گیرد. -* پایتون ۳ آنقدر هوشمند هست که چنین مواردی را به‌صورت خودکار با خطا اعلام کند. +- بنابراین «تب» در آخرین خط تابع `square` با هشت فاصله جایگزین شده و به همین دلیل داخل حلقه قرار می‌گیرد. +- پایتون ۳ آنقدر هوشمند هست که چنین مواردی را به‌صورت خودکار با خطا اعلام کند. **خروجی (Python 3.x):** @@ -3563,7 +3691,6 @@ def square(x): ## بخش: متفرقه - ### ◀ `+=` سریع‌تر است @@ -3576,8 +3703,9 @@ def square(x): 0.012188911437988281 ``` -#### 💡 توضیح: -+ استفاده از `+=` برای اتصال بیش از دو رشته سریع‌تر از `+` است، زیرا هنگام محاسبه رشته‌ی نهایی، رشته‌ی اول (به‌عنوان مثال `s1` در عبارت `s1 += s2 + s3`) از بین نمی‌رود. +#### 💡 توضیح: + +- استفاده از `+=` برای اتصال بیش از دو رشته سریع‌تر از `+` است، زیرا هنگام محاسبه رشته‌ی نهایی، رشته‌ی اول (به‌عنوان مثال `s1` در عبارت `s1 += s2 + s3`) از بین نمی‌رود. --- @@ -3653,12 +3781,15 @@ timeit.timeit('add_string_with_plus(10000)', number=1000, globals=globals()) ``` #### 💡 توضیح + توضیحات -- برای اطلاعات بیشتر درباره‌ی [timeit](https://docs.python.org/3/library/timeit.html) یا [%timeit](https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-timeit)، می‌توانید به این لینک‌ها مراجعه کنید. این توابع برای اندازه‌گیری زمان اجرای قطعه‌کدها استفاده می‌شوند. -- برای تولید رشته‌های طولانی از `+` استفاده نکنید — در پایتون، نوع داده‌ی `str` تغییرناپذیر (immutable) است؛ بنابراین برای هر الحاق (concatenation)، رشته‌ی چپ و راست باید در رشته‌ی جدید کپی شوند. اگر چهار رشته‌ی ۱۰ حرفی را متصل کنید، به‌جای کپی ۴۰ کاراکتر، باید `(10+10) + ((10+10)+10) + (((10+10)+10)+10) = 90` کاراکتر کپی کنید. این وضعیت با افزایش تعداد و طول رشته‌ها به‌صورت درجه دو (مربعی) بدتر می‌شود (که توسط زمان اجرای تابع `add_bytes_with_plus` تأیید شده است). -- بنابراین توصیه می‌شود از `.format` یا سینتکس `%` استفاده کنید (البته این روش‌ها برای رشته‌های بسیار کوتاه کمی کندتر از `+` هستند). -- اما بهتر از آن، اگر محتوای شما از قبل به‌شکل یک شیء قابل تکرار (iterable) موجود است، از دستور `''.join(iterable_object)` استفاده کنید که بسیار سریع‌تر است. -- برخلاف تابع `add_bytes_with_plus` و به‌دلیل بهینه‌سازی‌های انجام‌شده برای عملگر `+=` (که در مثال قبلی توضیح داده شد)، تابع `add_string_with_plus` افزایشی درجه دو در زمان اجرا نشان نداد. اگر دستور به‌صورت `s = s + "x" + "y" + "z"` بود (به‌جای `s += "xyz"`)، افزایش زمان اجرا درجه دو می‌شد. + +- برای اطلاعات بیشتر درباره‌ی [timeit](https://docs.python.org/3/library/timeit.html) یا [%timeit](https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-timeit)، می‌توانید به این لینک‌ها مراجعه کنید. این توابع برای اندازه‌گیری زمان اجرای قطعه‌کدها استفاده می‌شوند. +- برای تولید رشته‌های طولانی از `+` استفاده نکنید — در پایتون، نوع داده‌ی `str` تغییرناپذیر (immutable) است؛ بنابراین برای هر الحاق (concatenation)، رشته‌ی چپ و راست باید در رشته‌ی جدید کپی شوند. اگر چهار رشته‌ی ۱۰ حرفی را متصل کنید، به‌جای کپی ۴۰ کاراکتر، باید `(10+10) + ((10+10)+10) + (((10+10)+10)+10) = 90` کاراکتر کپی کنید. این وضعیت با افزایش تعداد و طول رشته‌ها به‌صورت درجه دو (مربعی) بدتر می‌شود (که توسط زمان اجرای تابع `add_bytes_with_plus` تأیید شده است). +- بنابراین توصیه می‌شود از `.format` یا سینتکس `%` استفاده کنید (البته این روش‌ها برای رشته‌های بسیار کوتاه کمی کندتر از `+` هستند). +- اما بهتر از آن، اگر محتوای شما از قبل به‌شکل یک شیء قابل تکرار (iterable) موجود است، از دستور `''.join(iterable_object)` استفاده کنید که بسیار سریع‌تر است. +- برخلاف تابع `add_bytes_with_plus` و به‌دلیل بهینه‌سازی‌های انجام‌شده برای عملگر `+=` (که در مثال قبلی توضیح داده شد)، تابع `add_string_with_plus` افزایشی درجه دو در زمان اجرا نشان نداد. اگر دستور به‌صورت `s = s + "x" + "y" + "z"` بود (به‌جای `s += "xyz"`)، افزایش زمان اجرا درجه دو می‌شد. + ```py def add_string_with_plus(iters): s = "" @@ -3671,10 +3802,10 @@ timeit.timeit('add_string_with_plus(10000)', number=1000, globals=globals()) >>> %timeit -n100 add_string_with_plus(10000) # افزایش درجه دو در زمان اجرا 9 ms ± 298 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) ``` + - وجود راه‌های متعدد برای قالب‌بندی و ایجاد رشته‌های بزرگ تا حدودی در تضاد با [ذِن پایتون](https://www.python.org/dev/peps/pep-0020/) است که می‌گوید: - - > «باید یک راه — و ترجیحاً فقط یک راه — واضح برای انجام آن وجود داشته باشد.» + > «باید یک راه — و ترجیحاً فقط یک راه — واضح برای انجام آن وجود داشته باشد.» --- @@ -3686,6 +3817,7 @@ another_dict = {str(i): 1 for i in range(1_000_000)} ``` **خروجی:** + ```py >>> %timeit some_dict['5'] 28.6 ns ± 0.115 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each) @@ -3702,14 +3834,15 @@ KeyError: 1 >>> %timeit another_dict['5'] 38.5 ns ± 0.0913 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each) ``` + چرا جستجوهای یکسان کندتر می‌شوند؟ -#### 💡 توضیح: -+ در CPython یک تابع عمومی برای جستجوی کلید در دیکشنری‌ها وجود دارد که از تمام انواع کلیدها (`str`، `int` و هر شیء دیگر) پشتیبانی می‌کند؛ اما برای حالت متداولی که تمام کلیدها از نوع `str` هستند، یک تابع بهینه‌شده‌ی اختصاصی نیز وجود دارد. -+ تابع اختصاصی (که در کد منبع CPython با نام [`lookdict_unicode`](https://github.com/python/cpython/blob/522691c46e2ae51faaad5bbbce7d959dd61770df/Objects/dictobject.c#L841) شناخته می‌شود) فرض می‌کند که تمام کلیدهای موجود در دیکشنری (از جمله کلیدی که در حال جستجوی آن هستید) رشته (`str`) هستند و برای مقایسه‌ی کلیدها، به‌جای فراخوانی متد `__eq__`، از مقایسه‌ی سریع‌تر و ساده‌تر رشته‌ای استفاده می‌کند. -+ اولین باری که یک دیکشنری (`dict`) با کلیدی غیر از `str` فراخوانی شود، این حالت تغییر می‌کند و جستجوهای بعدی از تابع عمومی استفاده خواهند کرد. -+ این فرایند برای آن نمونه‌ی خاص از دیکشنری غیرقابل بازگشت است و حتی لازم نیست کلید موردنظر در دیکشنری موجود باشد. به همین دلیل است که حتی تلاش ناموفق برای دسترسی به کلیدی ناموجود نیز باعث ایجاد همین تأثیر (کند شدن جستجو) می‌شود. +#### 💡 توضیح: +- در CPython یک تابع عمومی برای جستجوی کلید در دیکشنری‌ها وجود دارد که از تمام انواع کلیدها (`str`، `int` و هر شیء دیگر) پشتیبانی می‌کند؛ اما برای حالت متداولی که تمام کلیدها از نوع `str` هستند، یک تابع بهینه‌شده‌ی اختصاصی نیز وجود دارد. +- تابع اختصاصی (که در کد منبع CPython با نام [`lookdict_unicode`](https://github.com/python/cpython/blob/522691c46e2ae51faaad5bbbce7d959dd61770df/Objects/dictobject.c#L841) شناخته می‌شود) فرض می‌کند که تمام کلیدهای موجود در دیکشنری (از جمله کلیدی که در حال جستجوی آن هستید) رشته (`str`) هستند و برای مقایسه‌ی کلیدها، به‌جای فراخوانی متد `__eq__`، از مقایسه‌ی سریع‌تر و ساده‌تر رشته‌ای استفاده می‌کند. +- اولین باری که یک دیکشنری (`dict`) با کلیدی غیر از `str` فراخوانی شود، این حالت تغییر می‌کند و جستجوهای بعدی از تابع عمومی استفاده خواهند کرد. +- این فرایند برای آن نمونه‌ی خاص از دیکشنری غیرقابل بازگشت است و حتی لازم نیست کلید موردنظر در دیکشنری موجود باشد. به همین دلیل است که حتی تلاش ناموفق برای دسترسی به کلیدی ناموجود نیز باعث ایجاد همین تأثیر (کند شدن جستجو) می‌شود. ### ◀ حجیم کردن دیکشنری نمونه‌ها (`instance dicts`) * @@ -3730,6 +3863,7 @@ def dict_size(o): ``` **خروجی:** (پایتون ۳.۸؛ سایر نسخه‌های پایتون ۳ ممکن است کمی متفاوت باشند) + ```py >>> o1 = SomeClass() >>> o2 = SomeClass() @@ -3766,25 +3900,25 @@ def dict_size(o): چه چیزی باعث حجیم‌شدن این دیکشنری‌ها می‌شود؟ و چرا اشیاء تازه ساخته‌شده نیز حجیم هستند؟ #### 💡 توضیح: -+ در CPython، امکان استفاده‌ی مجدد از یک شیء «کلیدها» (`keys`) در چندین دیکشنری وجود دارد. این ویژگی در [PEP 412](https://www.python.org/dev/peps/pep-0412/) معرفی شد تا مصرف حافظه کاهش یابد، به‌ویژه برای دیکشنری‌هایی که به نمونه‌ها (instances) تعلق دارند و معمولاً کلیدها (نام صفات نمونه‌ها) بین آن‌ها مشترک است. -+ این بهینه‌سازی برای دیکشنری‌های نمونه‌ها کاملاً شفاف و خودکار است؛ اما اگر بعضی فرضیات نقض شوند، غیرفعال می‌شود. -+ دیکشنری‌هایی که کلیدهایشان به اشتراک گذاشته شده باشد، از حذف کلید پشتیبانی نمی‌کنند؛ بنابراین اگر صفتی از یک نمونه حذف شود، دیکشنریِ آن نمونه «غیر مشترک» (`unshared`) شده و این قابلیت اشتراک‌گذاری کلیدها برای تمام نمونه‌هایی که در آینده از آن کلاس ساخته می‌شوند، غیرفعال می‌گردد. -+ همچنین اگر اندازه‌ی دیکشنری به‌علت اضافه‌شدن کلیدهای جدید تغییر کند (`resize` شود)، اشتراک‌گذاری کلیدها تنها زمانی ادامه می‌یابد که فقط یک دیکشنری در حال استفاده از آن‌ها باشد (این اجازه می‌دهد در متد `__init__` برای اولین نمونه‌ی ساخته‌شده، صفات متعددی تعریف کنید بدون آن‌که اشتراک‌گذاری کلیدها از بین برود). اما اگر چند نمونه همزمان وجود داشته باشند و تغییر اندازه‌ی دیکشنری رخ دهد، قابلیت اشتراک‌گذاری کلیدها برای نمونه‌های بعدی همان کلاس غیرفعال خواهد شد. زیرا CPython دیگر نمی‌تواند مطمئن باشد که آیا نمونه‌های بعدی دقیقاً از مجموعه‌ی یکسانی از صفات استفاده خواهند کرد یا خیر. -+ نکته‌ای کوچک برای کاهش مصرف حافظه‌ی برنامه: هرگز صفات نمونه‌ها را حذف نکنید و حتماً تمام صفات را در متد `__init__` تعریف و مقداردهی اولیه کنید! +- در CPython، امکان استفاده‌ی مجدد از یک شیء «کلیدها» (`keys`) در چندین دیکشنری وجود دارد. این ویژگی در [PEP 412](https://www.python.org/dev/peps/pep-0412/) معرفی شد تا مصرف حافظه کاهش یابد، به‌ویژه برای دیکشنری‌هایی که به نمونه‌ها (instances) تعلق دارند و معمولاً کلیدها (نام صفات نمونه‌ها) بین آن‌ها مشترک است. +- این بهینه‌سازی برای دیکشنری‌های نمونه‌ها کاملاً شفاف و خودکار است؛ اما اگر بعضی فرضیات نقض شوند، غیرفعال می‌شود. +- دیکشنری‌هایی که کلیدهایشان به اشتراک گذاشته شده باشد، از حذف کلید پشتیبانی نمی‌کنند؛ بنابراین اگر صفتی از یک نمونه حذف شود، دیکشنریِ آن نمونه «غیر مشترک» (`unshared`) شده و این قابلیت اشتراک‌گذاری کلیدها برای تمام نمونه‌هایی که در آینده از آن کلاس ساخته می‌شوند، غیرفعال می‌گردد. +- همچنین اگر اندازه‌ی دیکشنری به‌علت اضافه‌شدن کلیدهای جدید تغییر کند (`resize` شود)، اشتراک‌گذاری کلیدها تنها زمانی ادامه می‌یابد که فقط یک دیکشنری در حال استفاده از آن‌ها باشد (این اجازه می‌دهد در متد `__init__` برای اولین نمونه‌ی ساخته‌شده، صفات متعددی تعریف کنید بدون آن‌که اشتراک‌گذاری کلیدها از بین برود). اما اگر چند نمونه همزمان وجود داشته باشند و تغییر اندازه‌ی دیکشنری رخ دهد، قابلیت اشتراک‌گذاری کلیدها برای نمونه‌های بعدی همان کلاس غیرفعال خواهد شد. زیرا CPython دیگر نمی‌تواند مطمئن باشد که آیا نمونه‌های بعدی دقیقاً از مجموعه‌ی یکسانی از صفات استفاده خواهند کرد یا خیر. +- نکته‌ای کوچک برای کاهش مصرف حافظه‌ی برنامه: هرگز صفات نمونه‌ها را حذف نکنید و حتماً تمام صفات را در متد `__init__` تعریف و مقداردهی اولیه کنید! -### ◀ موارد جزئی * +### ◀ موارد جزئی * -* متد `join()` عملیاتی مربوط به رشته (`str`) است، نه لیست (`list`). (در نگاه اول کمی برخلاف انتظار است.) +- متد `join()` عملیاتی مربوط به رشته (`str`) است، نه لیست (`list`). (در نگاه اول کمی برخلاف انتظار است.) **توضیح:** اگر `join()` به‌عنوان متدی روی رشته پیاده‌سازی شود، می‌تواند روی هر شیء قابل پیمایش (`iterable`) از جمله لیست، تاپل و هر نوع تکرارشونده‌ی دیگر کار کند. اگر به‌جای آن روی لیست تعریف می‌شد، باید به‌طور جداگانه برای هر نوع دیگری نیز پیاده‌سازی می‌شد. همچنین منطقی نیست که یک متد مختص رشته روی یک شیء عمومی مانند `list` پیاده شود. -* تعدادی عبارت با ظاهری عجیب اما از نظر معنا صحیح: - + عبارت `[] = ()` از نظر معنایی صحیح است (باز کردن یا `unpack` کردن یک تاپل خالی درون یک لیست خالی). - + عبارت `'a'[0][0][0][0][0]` نیز از نظر معنایی صحیح است، زیرا پایتون برخلاف زبان‌هایی که از C منشعب شده‌اند، نوع داده‌ای جداگانه‌ای برای کاراکتر ندارد. بنابراین انتخاب یک کاراکتر از یک رشته، منجر به بازگشت یک رشته‌ی تک‌کاراکتری می‌شود. - + عبارات `3 --0-- 5 == 8` و `--5 == 5` هر دو از لحاظ معنایی درست بوده و مقدارشان برابر `True` است. +- تعدادی عبارت با ظاهری عجیب اما از نظر معنا صحیح: + - عبارت `[] = ()` از نظر معنایی صحیح است (باز کردن یا `unpack` کردن یک تاپل خالی درون یک لیست خالی). + - عبارت `'a'[0][0][0][0][0]` نیز از نظر معنایی صحیح است، زیرا پایتون برخلاف زبان‌هایی که از C منشعب شده‌اند، نوع داده‌ای جداگانه‌ای برای کاراکتر ندارد. بنابراین انتخاب یک کاراکتر از یک رشته، منجر به بازگشت یک رشته‌ی تک‌کاراکتری می‌شود. + - عبارات `3 --0-- 5 == 8` و `--5 == 5` هر دو از لحاظ معنایی درست بوده و مقدارشان برابر `True` است. -* با فرض اینکه `a` یک عدد باشد، عبارات `++a` و `--a` هر دو در پایتون معتبر هستند؛ اما رفتاری مشابه با عبارات مشابه در زبان‌هایی مانند C، ++C یا جاوا ندارند. +- با فرض اینکه `a` یک عدد باشد، عبارات `++a` و `--a` هر دو در پایتون معتبر هستند؛ اما رفتاری مشابه با عبارات مشابه در زبان‌هایی مانند C، ++C یا جاوا ندارند. ```py >>> a = 5 @@ -3797,11 +3931,12 @@ def dict_size(o): ``` 💡 **توضیح:** - + در گرامر پایتون عملگری به‌نام `++` وجود ندارد. در واقع `++` دو عملگر `+` جداگانه است. - + عبارت `++a` به‌شکل `+(+a)` تفسیر می‌شود که معادل `a` است. به‌همین ترتیب، خروجی عبارت `--a` نیز قابل توجیه است. - + این [تاپیک در StackOverflow](https://stackoverflow.com/questions/3654830/why-are-there-no-and-operators-in-python) دلایل نبودن عملگرهای افزایش (`++`) و کاهش (`--`) در پایتون را بررسی می‌کند. -* احتمالاً با عملگر Walrus (گراز دریایی) در پایتون آشنا هستید؛ اما تا به حال در مورد *عملگر Space-invader (مهاجم فضایی)* شنیده‌اید؟ +- در گرامر پایتون عملگری به‌نام `++` وجود ندارد. در واقع `++` دو عملگر `+` جداگانه است. +- عبارت `++a` به‌شکل `+(+a)` تفسیر می‌شود که معادل `a` است. به‌همین ترتیب، خروجی عبارت `--a` نیز قابل توجیه است. +- این [تاپیک در StackOverflow](https://stackoverflow.com/questions/3654830/why-are-there-no-and-operators-in-python) دلایل نبودن عملگرهای افزایش (`++`) و کاهش (`--`) در پایتون را بررسی می‌کند. + +- احتمالاً با عملگر Walrus (گراز دریایی) در پایتون آشنا هستید؛ اما تا به حال در مورد *عملگر Space-invader (مهاجم فضایی)* شنیده‌اید؟ ```py >>> a = 42 @@ -3809,16 +3944,19 @@ def dict_size(o): >>> a 43 ``` + از آن به‌عنوان جایگزینی برای عملگر افزایش (increment)، در ترکیب با یک عملگر دیگر استفاده می‌شود. + ```py >>> a +=+ 1 >>> a >>> 44 ``` + **💡 توضیح:** این شوخی از [توییت Raymond Hettinger](https://twitter.com/raymondh/status/1131103570856632321?lang=en) برگرفته شده است. عملگر «مهاجم فضایی» در واقع همان عبارت بدفرمت‌شده‌ی `a -= (-1)` است که معادل با `a = a - (- 1)` می‌باشد. حالت مشابهی برای عبارت `a += (+ 1)` نیز وجود دارد. -* پایتون یک عملگر مستندنشده برای [استلزام معکوس (converse implication)](https://en.wikipedia.org/wiki/Converse_implication) دارد. - +- پایتون یک عملگر مستندنشده برای [استلزام معکوس (converse implication)](https://en.wikipedia.org/wiki/Converse_implication) دارد. + ```py >>> False ** False == True True @@ -3832,7 +3970,7 @@ def dict_size(o): **💡 توضیح:** اگر مقادیر `False` و `True` را به‌ترتیب با اعداد ۰ و ۱ جایگزین کرده و محاسبات را انجام دهید، جدول درستی حاصل، معادل یک عملگر استلزام معکوس خواهد بود. ([منبع](https://github.com/cosmologicon/pywat/blob/master/explanation.md#the-undocumented-converse-implication-operator)) -* حالا که صحبت از عملگرها شد، عملگر `@` نیز برای ضرب ماتریسی در پایتون وجود دارد (نگران نباشید، این بار واقعی است). +- حالا که صحبت از عملگرها شد، عملگر `@` نیز برای ضرب ماتریسی در پایتون وجود دارد (نگران نباشید، این بار واقعی است). ```py >>> import numpy as np @@ -3842,15 +3980,16 @@ def dict_size(o): **💡 توضیح:** عملگر `@` در پایتون ۳٫۵ با در نظر گرفتن نیازهای جامعه علمی اضافه شد. هر شی‌ای می‌تواند متد جادویی `__matmul__` را بازنویسی کند تا رفتار این عملگر را مشخص نماید. -* از پایتون ۳٫۸ به بعد می‌توانید از نحو متداول f-string مانند `f'{some_var=}'` برای اشکال‌زدایی سریع استفاده کنید. مثال, +- از پایتون ۳٫۸ به بعد می‌توانید از نحو متداول f-string مانند `f'{some_var=}'` برای اشکال‌زدایی سریع استفاده کنید. مثال, + ```py >>> some_string = "wtfpython" >>> f'{some_string=}' "some_string='wtfpython'" - ``` + ``` + +- پایتون برای ذخیره‌سازی متغیرهای محلی در توابع از ۲ بایت استفاده می‌کند. از نظر تئوری، این به معنای امکان تعریف حداکثر ۶۵۵۳۶ متغیر در یک تابع است. با این حال، پایتون راهکار مفیدی ارائه می‌کند که می‌توان با استفاده از آن بیش از ۲^۱۶ نام متغیر را ذخیره کرد. کد زیر نشان می‌دهد وقتی بیش از ۶۵۵۳۶ متغیر محلی تعریف شود، در پشته (stack) چه اتفاقی رخ می‌دهد (هشدار: این کد تقریباً ۲^۱۸ خط متن چاپ می‌کند، بنابراین آماده باشید!): -* پایتون برای ذخیره‌سازی متغیرهای محلی در توابع از ۲ بایت استفاده می‌کند. از نظر تئوری، این به معنای امکان تعریف حداکثر ۶۵۵۳۶ متغیر در یک تابع است. با این حال، پایتون راهکار مفیدی ارائه می‌کند که می‌توان با استفاده از آن بیش از ۲^۱۶ نام متغیر را ذخیره کرد. کد زیر نشان می‌دهد وقتی بیش از ۶۵۵۳۶ متغیر محلی تعریف شود، در پشته (stack) چه اتفاقی رخ می‌دهد (هشدار: این کد تقریباً ۲^۱۸ خط متن چاپ می‌کند، بنابراین آماده باشید!): - ```py import dis exec(""" @@ -3862,10 +4001,10 @@ def dict_size(o): print(dis.dis(f)) ``` - -* چندین رشته (Thread) در پایتون، کدِ *پایتونی* شما را به‌صورت همزمان اجرا نمی‌کنند (بله، درست شنیدید!). شاید به نظر برسد که ایجاد چندین رشته و اجرای همزمان آن‌ها منطقی است، اما به دلیل وجود [قفل مفسر سراسری (GIL)](https://wiki.python.org/moin/GlobalInterpreterLock) در پایتون، تمام کاری که انجام می‌دهید این است که رشته‌هایتان به‌نوبت روی یک هسته اجرا می‌شوند. رشته‌ها در پایتون برای وظایفی مناسب هستند که عملیات I/O دارند، اما برای رسیدن به موازی‌سازی واقعی در وظایف پردازشی سنگین (CPU-bound)، بهتر است از ماژول [multiprocessing](https://docs.python.org/3/library/multiprocessing.html) در پایتون استفاده کنید. -* گاهی اوقات، متد `print` ممکن است مقادیر را فوراً چاپ نکند. برای مثال، +- چندین رشته (Thread) در پایتون، کدِ *پایتونی* شما را به‌صورت همزمان اجرا نمی‌کنند (بله، درست شنیدید!). شاید به نظر برسد که ایجاد چندین رشته و اجرای همزمان آن‌ها منطقی است، اما به دلیل وجود [قفل مفسر سراسری (GIL)](https://wiki.python.org/moin/GlobalInterpreterLock) در پایتون، تمام کاری که انجام می‌دهید این است که رشته‌هایتان به‌نوبت روی یک هسته اجرا می‌شوند. رشته‌ها در پایتون برای وظایفی مناسب هستند که عملیات I/O دارند، اما برای رسیدن به موازی‌سازی واقعی در وظایف پردازشی سنگین (CPU-bound)، بهتر است از ماژول [multiprocessing](https://docs.python.org/3/library/multiprocessing.html) در پایتون استفاده کنید. + +- گاهی اوقات، متد `print` ممکن است مقادیر را فوراً چاپ نکند. برای مثال، ```py # File some_file.py @@ -3877,14 +4016,16 @@ def dict_size(o): این کد عبارت `wtfpython` را به دلیل آرگومان `end` پس از ۳ ثانیه چاپ می‌کند؛ چرا که بافر خروجی تنها پس از رسیدن به کاراکتر `\n` یا در زمان اتمام اجرای برنامه تخلیه می‌شود. برای تخلیه‌ی اجباری بافر می‌توانید از آرگومان `flush=True` استفاده کنید. -* برش لیست‌ها (List slicing) با اندیس‌های خارج از محدوده، خطایی ایجاد نمی‌کند. +- برش لیست‌ها (List slicing) با اندیس‌های خارج از محدوده، خطایی ایجاد نمی‌کند. + ```py >>> some_list = [1, 2, 3, 4, 5] >>> some_list[111:] [] ``` -* برش زدن (slicing) یک شئ قابل پیمایش (iterable) همیشه یک شئ جدید ایجاد نمی‌کند. به‌عنوان مثال، +- برش زدن (slicing) یک شئ قابل پیمایش (iterable) همیشه یک شئ جدید ایجاد نمی‌کند. به‌عنوان مثال، + ```py >>> some_str = "wtfpython" >>> some_list = ['w', 't', 'f', 'p', 'y', 't', 'h', 'o', 'n'] @@ -3894,9 +4035,9 @@ def dict_size(o): True ``` -* در پایتون ۳، فراخوانی `int('١٢٣٤٥٦٧٨٩')` مقدار `123456789` را برمی‌گرداند. در پایتون، نویسه‌های ده‌دهی (Decimal characters) شامل تمام ارقامی هستند که می‌توانند برای تشکیل اعداد در مبنای ده استفاده شوند؛ به‌عنوان مثال نویسه‌ی U+0660 که همان رقم صفر عربی-هندی است. [اینجا](https://chris.improbable.org/2014/8/25/adventures-in-unicode-digits/) داستان جالبی درباره این رفتار پایتون آمده است. +- در پایتون ۳، فراخوانی `int('١٢٣٤٥٦٧٨٩')` مقدار `123456789` را برمی‌گرداند. در پایتون، نویسه‌های ده‌دهی (Decimal characters) شامل تمام ارقامی هستند که می‌توانند برای تشکیل اعداد در مبنای ده استفاده شوند؛ به‌عنوان مثال نویسه‌ی U+0660 که همان رقم صفر عربی-هندی است. [اینجا](https://chris.improbable.org/2014/8/25/adventures-in-unicode-digits/) داستان جالبی درباره این رفتار پایتون آمده است. -* از پایتون ۳ به بعد، می‌توانید برای افزایش خوانایی، اعداد را با استفاده از زیرخط (`_`) جدا کنید. +- از پایتون ۳ به بعد، می‌توانید برای افزایش خوانایی، اعداد را با استفاده از زیرخط (`_`) جدا کنید. ```py >>> six_million = 6_000_000 @@ -3907,7 +4048,8 @@ def dict_size(o): 4027435774 ``` -* عبارت `'abc'.count('') == 4` مقدار `True` برمی‌گرداند. در اینجا یک پیاده‌سازی تقریبی از متد `count` آورده شده که این موضوع را شفاف‌تر می‌کند: +- عبارت `'abc'.count('') == 4` مقدار `True` برمی‌گرداند. در اینجا یک پیاده‌سازی تقریبی از متد `count` آورده شده که این موضوع را شفاف‌تر می‌کند: + ```py def count(s, sub): result = 0 @@ -3915,6 +4057,7 @@ def dict_size(o): result += (s[i:i + len(sub)] == sub) return result ``` + این رفتار به این دلیل است که زیررشته‌ی خالی (`''`) با برش‌هایی (slices) به طول صفر در رشته‌ی اصلی مطابقت پیدا می‌کند. --- @@ -3938,17 +4081,17 @@ def dict_size(o): ایده و طراحی این مجموعه ابتدا از پروژه عالی [wtfjs](https://github.com/denysdovhan/wtfjs) توسط Denys Dovhan الهام گرفته شد. حمایت فوق‌العاده‌ جامعه پایتون باعث شد پروژه به شکل امروزی خود درآید. - #### چند لینک جالب! -* https://www.youtube.com/watch?v=sH4XF6pKKmk -* https://www.reddit.com/r/Python/comments/3cu6ej/what_are_some_wtf_things_about_python -* https://sopython.com/wiki/Common_Gotchas_In_Python -* https://stackoverflow.com/questions/530530/python-2-x-gotchas-and-landmines -* https://stackoverflow.com/questions/1011431/common-pitfalls-in-python -* https://www.python.org/doc/humor/ -* https://github.com/cosmologicon/pywat#the-undocumented-converse-implication-operator -* https://github.com/wemake-services/wemake-python-styleguide/search?q=wtfpython&type=Issues -* WFTPython discussion threads on [Hacker News](https://news.ycombinator.com/item?id=21862073) and [Reddit](https://www.reddit.com/r/programming/comments/edsh3q/what_the_fck_python_30_exploring_and/). + +- https://www.youtube.com/watch?v=sH4XF6pKKmk +- https://www.reddit.com/r/Python/comments/3cu6ej/what_are_some_wtf_things_about_python +- https://sopython.com/wiki/Common_Gotchas_In_Python +- https://stackoverflow.com/questions/530530/python-2-x-gotchas-and-landmines +- https://stackoverflow.com/questions/1011431/common-pitfalls-in-python +- https://www.python.org/doc/humor/ +- https://github.com/cosmologicon/pywat#the-undocumented-converse-implication-operator +- https://github.com/wemake-services/wemake-python-styleguide/search?q=wtfpython&type=Issues +- WFTPython discussion threads on [Hacker News](https://news.ycombinator.com/item?id=21862073) and [Reddit](https://www.reddit.com/r/programming/comments/edsh3q/what_the_fck_python_30_exploring_and/). # 🎓 مجوز @@ -3965,10 +4108,8 @@ def dict_size(o): [توییتر](https://twitter.com/intent/tweet?url=https://github.com/satwikkansal/wtfpython&text=If%20you%20really%20think%20you%20know%20Python,%20think%20once%20more!%20Check%20out%20wtfpython&hashtags=python,wtfpython) | [لینکدین](https://www.linkedin.com/shareArticle?url=https://github.com/satwikkansal&title=What%20the%20f*ck%20Python!&summary=If%20you%20really%20thing%20you%20know%20Python,%20think%20once%20more!) | [فیسبوک](https://www.facebook.com/dialog/share?app_id=536779657179021&display=page&href=https%3A%2F%2Fgithub.com%2Fsatwikkansal%2Fwtfpython"e=If%20you%20really%20think%20you%20know%20Python%2C%20think%20once%20more!) - ## آیا به یک نسخه pdf نیاز دارید؟ - من چند درخواست برای نسخه PDF (و epub) کتاب wtfpython دریافت کرده‌ام. برای دریافت این نسخه‌ها به محض آماده شدن، می‌توانید اطلاعات خود را [اینجا](https://form.jotform.com/221593245656057) وارد کنید. **همین بود دوستان!** برای دریافت مطالب آینده مشابه این، می‌توانید ایمیل خود را [اینجا](https://form.jotform.com/221593598380062) اضافه کنید.