mirror of
https://github.com/satwikkansal/wtfpython
synced 2024-11-25 20:44:24 +01:00
Let's make a giant string: Use %timeit for measuring time
Fixes https://github.com/satwikkansal/wtfpython/issues/106
This commit is contained in:
parent
9ea7ab0c5a
commit
2bfa6d2e5b
63
README.md
vendored
63
README.md
vendored
@ -2450,40 +2450,47 @@ def convert_list_to_string(l, iters):
|
||||
```
|
||||
|
||||
**Output:**
|
||||
|
||||
```py
|
||||
>>> timeit(add_string_with_plus(10000))
|
||||
1000 loops, best of 3: 972 µs per loop
|
||||
>>> timeit(add_bytes_with_plus(10000))
|
||||
1000 loops, best of 3: 815 µs per loop
|
||||
>>> timeit(add_string_with_format(10000))
|
||||
1000 loops, best of 3: 508 µs per loop
|
||||
>>> timeit(add_string_with_join(10000))
|
||||
1000 loops, best of 3: 878 µs per loop
|
||||
>>> l = ["xyz"]*10000
|
||||
>>> timeit(convert_list_to_string(l, 10000))
|
||||
10000 loops, best of 3: 80 µs per loop
|
||||
# Executed in ipython shell using %timeit for better readablity of results.
|
||||
# You can also use the timeit module in normal python shell/scriptm=, example usage below
|
||||
# timeit.timeit('add_string_with_plus(10000)', number=1000, globals=globals())
|
||||
|
||||
>>> NUM_ITERS = 1000
|
||||
>>> %timeit -n1000 add_string_with_plus(NUM_ITERS)
|
||||
124 µs ± 4.73 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
|
||||
>>> %timeit -n1000 add_bytes_with_plus(NUM_ITERS)
|
||||
211 µs ± 10.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
|
||||
>>> %timeit -n1000 add_string_with_format(NUM_ITERS)
|
||||
61 µs ± 2.18 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
|
||||
>>> %timeit -n1000 add_string_with_join(NUM_ITERS)
|
||||
117 µs ± 3.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
|
||||
>>> l = ["xyz"]*NUM_ITERS
|
||||
>>> %timeit -n1000 convert_list_to_string(l, NUM_ITERS)
|
||||
10.1 µs ± 1.06 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
|
||||
```
|
||||
|
||||
Let's increase the number of iterations by a factor of 10.
|
||||
|
||||
```py
|
||||
>>> timeit(add_string_with_plus(100000)) # Linear increase in execution time
|
||||
100 loops, best of 3: 9.75 ms per loop
|
||||
>>> timeit(add_bytes_with_plus(100000)) # Quadratic increase
|
||||
1000 loops, best of 3: 974 ms per loop
|
||||
>>> timeit(add_string_with_format(100000)) # Linear increase
|
||||
100 loops, best of 3: 5.25 ms per loop
|
||||
>>> timeit(add_string_with_join(100000)) # Linear increase
|
||||
100 loops, best of 3: 9.85 ms per loop
|
||||
>>> l = ["xyz"]*100000
|
||||
>>> timeit(convert_list_to_string(l, 100000)) # Linear increase
|
||||
1000 loops, best of 3: 723 µs per loop
|
||||
>>> NUM_ITERS = 10000
|
||||
>>> %timeit -n1000 add_string_with_plus(NUM_ITERS) # Linear increase in execution time
|
||||
1.26 ms ± 76.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
|
||||
>>> %timeit -n1000 add_bytes_with_plus(NUM_ITERS) # Quadratic increase
|
||||
6.82 ms ± 134 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
|
||||
>>> %timeit -n1000 add_string_with_format(NUM_ITERS) # Linear increase
|
||||
645 µs ± 24.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
|
||||
>>> %timeit -n1000 add_string_with_join(NUM_ITERS) # Linear increase
|
||||
1.17 ms ± 7.25 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
|
||||
>>> l = ["xyz"]*NUM_ITERS
|
||||
>>> %timeit -n1000 convert_list_to_string(l, NUM_ITERS) # Linear increase
|
||||
86.3 µs ± 2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
|
||||
```
|
||||
|
||||
#### 💡 Explanation
|
||||
- You can read more about [timeit](https://docs.python.org/3/library/timeit.html) from here. It is generally used to measure the execution time of snippets.
|
||||
- You can read more about [timeit](https://docs.python.org/3/library/timeit.html) or [%timeit](https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-timeit) on these links. They are used to measure the execution time of code pieces.
|
||||
- Don't use `+` for generating long strings — In Python, `str` is immutable, so the left and right strings have to be copied into the new string for every pair of concatenations. If you concatenate four strings of length 10, you'll be copying (10+10) + ((10+10)+10) + (((10+10)+10)+10) = 90 characters instead of just 40 characters. Things get quadratically worse as the number and size of the string increases (justified with the execution times of `add_bytes_with_plus` function)
|
||||
- Therefore, it's advised to use `.format.` or `%` syntax (however, they are slightly slower than `+` for short strings).
|
||||
- Therefore, it's advised to use `.format.` or `%` syntax (however, they are slightly slower than `+` for very short strings).
|
||||
- Or better, if already you've contents available in the form of an iterable object, then use `''.join(iterable_object)` which is much faster.
|
||||
- `add_string_with_plus` didn't show a quadratic increase in execution time unlike `add_bytes_with_plus` because of the `+=` optimizations discussed in the previous example. Had the statement been `s = s + "x" + "y" + "z"` instead of `s += "xyz"`, the increase would have been quadratic.
|
||||
```py
|
||||
@ -2493,10 +2500,10 @@ Let's increase the number of iterations by a factor of 10.
|
||||
s = s + "x" + "y" + "z"
|
||||
assert len(s) == 3*iters
|
||||
|
||||
>>> timeit(add_string_with_plus(10000))
|
||||
100 loops, best of 3: 9.87 ms per loop
|
||||
>>> timeit(add_string_with_plus(100000)) # Quadratic increase in execution time
|
||||
1 loops, best of 3: 1.09 s per loop
|
||||
>>> %timeit -n100 add_string_with_plus(1000)
|
||||
388 µs ± 22.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
|
||||
>>> %timeit -n100 add_string_with_plus(10000) # Quadratic increase in execution time
|
||||
9 ms ± 298 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
|
||||
```
|
||||
|
||||
---
|
||||
|
Loading…
Reference in New Issue
Block a user