

Decentralized Privacy-Preserving
Proximity Tracing

Version: 8th April 2020.
Contact the first author for the latest version.

EPFL​: Prof. Carmela Troncoso, Prof. Mathias Payer, Prof. Jean-Pierre
Hubaux, Prof. Marcel Salathé, Prof. James Larus, Prof. Edouard

Bugnion, Dr. Wouter Lueks, Theresa Stadler, Dr. Apostolos Pyrgelis, Dr.
Daniele Antonioli, Ludovic Barman, Sylvain Chatel

ETHZ​: Prof. Kenneth Paterson, Prof. Srdjan Capkun, Prof. David Basin,
Dennis Jackson

KU Leuven​: Prof. Bart Preneel, Prof. Nigel Smart, Dr. Dave Singelee,
Dr. Aysajan Abidin

TU Delft​: Prof. Seda Guerses

University College London​: Dr. Michael Veale

CISPA​: Prof. Cas Cremers

University of Oxford​: Dr. Reuben Binns

TU Berlin / Fraunhofer HHI​: Prof. Thomas Wiegand

University of Torino / ISI Foundation​ Prof. Ciro Cattuto

CC-BY 4.0

2

Executive Summary
This document proposes a system for secure and privacy-preserving proximity tracing ​(aka
contact tracing) ​at large scale. This system provides a technological foundation to help slow
the spread of the SARS-CoV-2 virus by simplifying and accelerating the process of notifying
people who have been in contact with an infected person. The system design aims to
minimise privacy and security risks for individuals and communities and guarantee the
highest level of data protection.

The goal of proximity tracing is to determine who has been in close physical proximity to an
infected person, without revealing the contact’s identity or where this contact occurred. To
achieve this goal, users continually run a smartphone app that broadcasts an ephemeral,
pseudo-random ID representing the user and also record pseudo-random IDs observed from
smartphones in close proximity. Whenever a patient is diagnosed for COVID-19, she can
upload some anonymous data from her phone to a central server. This step should only be
done with the approval of a health authority and the explicit permission of the individual.
Before, all data remains exclusively on the user’s phone. Other instances of the app can use
the anonymous data from the server to locally compute whether the app’s user was in
physical proximity to an infected person and the risk that an encounter led to a propagation
of the virus. In case the app detects a high risk, it will inform the user. Additionally, the
system enables users to voluntarily provide information to epidemiologists, in a
privacy-preserving manner, to enable studies of the evolution of the disease and to assist in
finding better policies to prevent further infections.

The system provides the following security and privacy protections:

- Ensures data minimization​. The central server only observes anonymous identifiers
of infected people without any proximity information; health authorities learn no
information (beyond when a user manually reaches out to them after being notified);
and epidemiologists obtain an anonymized proximity graph with minimal information.

- Prevents abuse of data​. As the different entities in the system receive the minimum
amount of information tailored to their requirements, none of them can abuse the
data for other purposes, nor can they be coerced or subpoenaed to make other data
available.

- Prevents tracking of non-infected users. No entity, including the backend, can
track ​non-infected users​ based on broadcasted ephemeral identifiers.

- Graceful dismantling. The system will organically dismantle itself after the end of
the epidemic. Infected patients will stop uploading their data to the central server,
and people will stop using the app. Data on the server is removed after 14 days.

We are publishing this document to seek feedback from a broad audience on the high-level
design, its security and privacy properties, and the functionality it offers; so that further
protection mechanisms can be added if weaknesses are identified. In particular, we seek
feedback on the unlinkable design, as it presents overall better privacy properties. This
document is accompanied by an overview of the data protection compliance of the design.

3

Changelog

7 April 2020
General:

● Numbered sections for easier referencing.

Goals and requirements:

● Clarify app sends notification (Section 2)
● Add detail about most relevant information for epidemiological analysis (Section

1.1)
● Add non-goals of the system (response issue #33, Section 1.1)

Previous design (renamed: ​ ​Low-cost decentralized proximity tracing, ​in Section 2)

● Clarification on data sent to epidemiologists (Section 2, Epidemiologists)
● Slight tweak to design: send the day ​t ​explicitly when reporting an infected key

SK​
t​, be clear that ​t​ is a global rather than local counter (Section 2, Setup)

● Added second operation point in scalability (Section 2, Scalability)
● Interoperability: added possibility of mobile network carrier, and changed hard

coded to config file (response issue #26, Section 2, Interoperability)

Added alternative design​ (​Unlinkable decentralized proximity tracing​, in Section 3)

● Added a new design that: prevents broadcast of seeds, provides unlinkability
between EphIDs, enables users to redact EphIDs that they do not want published

Security and Privacy analysis

● Clarified that no notification is automatically sent to the health authority (response
issue #52)

● Added introduction to threat model (response issue #47, Section 4.1)
● Removed redacting mitigation from low-cost design (not possible due to hash

chain)
● Added replay attack to create fake contacts on low-cost design (Section 4.3)
● Added security and privacy analysis of unlinkable design (Sections 4.2 and 4.3)
● Added comparison with both unlinkable design and low-cost design in the table

(Section 5.4)

4

1. Goals and requirements

1.1 System goals
1) Enable quick notification of contact people at risk and give guidance on next steps
In Switzerland, the proximity tracing (also known as contact tracing) process is legally
anchored in the ​Infection Protection Act and is carried out by the health authorities. Other
countries have similar laws. The multi-stage procedure is ​time-consuming and requires a
large number of trained personnel​. Under the current process, an employee of the health
authorities conducts an in-person interview with an infected person to trace her or his
contact history and identify other people who are likely to have contracted a disease.
However, this process is slow and the ​results incomplete ​as usually patients are ​often
unable to recall without gaps all contacts over a period of days​.  ​Furthermore, ​random
contacts ​(e.g., seat neighbours in public transport) ​cannot be identified​ ​and alerted.

Fortunately, most adults carry smartphones throughout the day, which opens the possibility
of an app that can aid ​health authorities in their efforts to reduce the infection growth rate.
The app should provide anonymous data that enables each phone to locally calculate
whether the smartphone owner is at risk of having contracted a virus because they were in
close proximity to an infected individual. The app should then provide a process by which
at-risk users can be notified. We call the process that enables the app to learn whom to
notify ​proximity tracing​.

2) Enable epidemiologists to analyse the spread of SARS-CoV-2
Currently, there is a ​lack of detailed data on the spread of SARS-CoV-2. Epidemiologists
are trying to understand the key factors in the spread of the virus. More precise and timely
data would enable epidemiologists to improve their recommendations to policy makers and
health authorities about the most important and effective measures during the containment
phase of this and future pandemics.

The application should provide users with the possibility to ​voluntarily share data with
epidemiologists and research groups to enable these groups to reconstruct the interaction
graph among infected and at-risk users (referred to as a ​proximity graph​). The information
most relevant to the analysis carried out by epidemiologists is ​relative timing information​:
at which phase of the infection did a contact occur?

Out of scope goals
The app does not aim to provide these functionalities:

- Tracking infected patients​: once infected patients report themselves, the app does
not attempt to track them, nor does it provide a mechanism to ensure that they
comply with medical orders. Recall that the goal of the app is to avoid asymptomatic
users unknowingly spreading a disease. Diagnosed users are assumed to be
responsible and take precautions if necessary to go into public, for instance to a
doctor appointment. We do not attempt to detect or prevent misbehavior. The reason

https://www.rki.de/EN/Content/infections/inf_dis_down.pdf?__blob=publicationFile

5

being that the gain in utility (one irresponsible person being under control) does not
justify the loss of privacy for other well-behaved infected users. Moreover, this is not
a location-tracking app and cannot determine when a user is “in public.”

- Finding hotspots or infected users’ trajectories​: the app does not attempt to
identify locations that have a concentration of infected people. This is a design
decision. We limit the purpose of the application to the two goals specified above,
which enable us to collect and process very little data. In particular it avoids collecting
location data, which is highly sensitive and very difficult to publish in a
privacy-preserving way.

1.2 System requirements
1) Functional requirements
To achieve the system goals outlined above, the application must fulfill these functional
requirements:

● Completeness:​ The contact history is ​comprehensive​ regarding contact events.
● Precision:​ Reported contact events ​must reflect​ actual physical proximity
● Integrity: Contact events corresponding to at-risk parties are ​authentic​, i.e., users

cannot fake contact events.
● Confidentiality:​ A malicious actor cannot access the contact history of a user
● Notification:​ At-risk individuals can be informed

2) Respect and preserve digital right to privacy of individuals
It is of paramount importance that any digital solution to enhance proximity tracing ​​respects
the privacy of individual users and communities ​and ​​complies with relevant data
protection guidelines such as the European General Data Protection Regulation (​see
EDPB Statement on GDPR and COVID-19​)​. The GDPR does not stop the use of data for
public health, particularly in times of crisis, but it still imposes a binding obligation to ensure
that 'only personal data which are necessary for each specific purpose of the processing are
processed' (art 25). It is therefore a legal requirement to consider, particularly in the creation
of systems with major implications for rights and freedoms, whether such a system could be
technically designed to use and retain less data while achieving the same effect. To this end,
an application must minimize the amount of data collected and processed to avoid risks for
individuals and communities, and it should reveal only the minimum information truly needed
to each authorized entity.

Furthermore, a common concern with systems like these is that the data and infrastructure
might be used beyond its originally intended purpose. Data protection law supports the
overarching principle of ‘purpose limitation’ — precluding the widening of purposes after the
crisis through technical limitations. Such assurances will likely be important to achieve the
necessary level of adoption in each country and across Europe, by providing citizens with
the confidence and trust that their personal data is protected and used appropriately and
carefully. Only applications that do not violate a user’s privacy ​​by design ​will be widely
accepted.

https://edpb.europa.eu/sites/edpb/files/files/file1/edpb_statement_2020_processingpersonaldataandcovid-19_en.pdf

6

The system should provide the following guarantees:
● Data use: ​Data collection and use should be limited to the purpose of the data

collection: proximity tracing and proximity graph reconstruction. This implies that the
design should avoid collecting and using any data, such as for example geolocation
data, that is not directly related to the task of detecting a close contact between two
individuals.

● Controlled inference: ​Inferences about individuals and communities, such as
information about social interactions or medical diagnosis, should be controlled to
avoid unintended information leakage. Each authorised entity should only be able
learn the information strictly necessary to fulfill the functional requirement.

● Protect identities: ​The system should collect, store, and use anonymous or
pseudonymous data that is not directly linkable to an individual’s identity where
possible.

● Erasure: ​The system should respect best practices in terms of data retention periods
and delete any data that is not relevant.

3) Fulfill the scalability requirements posed by a global pandemic
SARS-CoV-2 is rapidly spreading across the globe due to the free movement of people
across national borders and continents. As a core principle of free democracies, after the
current confinement measures end, free movement should resume. Proximity tracing must
support free movement across borders and scale to the world’s population.

The system should give the following guarantees:

● Scalability:​ The system scales to billions of users.
● Interoperability:​ The system works across borders and health authorities.

4) Feasibility under current technical constraints
There is an urgency to not only design but ​implement a digital system that simplifies and
accelerates proximity tracing in the near future. This mandates a system design that is
mindful of the technical constraints​ posed by currently available technologies.

● No reliance on new breakthroughs: ​The system should, as far as possible, only
use techniques and methods readily available at the time of development and avoid
relying on new breakthroughs in areas such as GPS localisation or Bluetooth
distance measurements.

● Widely available hardware​: The goal of high adoption of proximity tracing can only
be achieved if both server- and client-side applications can run on widely available
smartphones and server hardware

7

2. Design 1: Low-cost decentralized proximity tracing
We propose a privacy-friendly, decentralized solution that reveals minimal information to the
backend server. To facilitate proximity tracing, smartphones locally generate ​ephemeral
Bluetooth identifiers (​EphIDs ​) and broadcast them. Other smartphones observe these
EphIDs and store them together with the duration and a coarse indication of time (e.g., “The
morning of April 2”). See Figure AA.

The proximity tracing process is supported by a backend server that shares infection
information with the app running on each phone. This backend server is trusted to not add or
remove information shared by the users and to be available. However, it is ​untrusted with
regards to privacy (i.e., collecting and processing of personal data). In other words, the
privacy of the users in the system does not depend on the actions of this server. Even if the
server is compromised or seized, privacy remains intact.

When patients are diagnosed with SARS-CoV-2, they will be authorized by national health
authorities to publish information. Then, they will instruct their phones to upload to the
backend a compact representation of their ​EphIDs for the infectious period. The backend
stores these ​compact representations. ​Other smartphones periodically query the backend for
this information and reconstruct the corresponding ​EphIDs of infected patients locally. If the
smartphone has stored a record of any of these infected EphIDs, then the smartphone’s user
has been in contact with an infected person and the smartphone computes the owner’s risk
score. If this score is above the threshold the smartphone initiates a notification process.

Figure AA: Processing and storing of observed ​EphIDs ​.

Setup
Generating a key. ​Let ​t be the current day (e.g., indexed by some fixed starting point for the
system). Smartphones generate a random initial daily key ​SK ​

t ​for the first day ​t ​.

Creating ephemeral IDs (​EphIDs​)
EphID Constraints​. Given the completeness requirement, it is necessary that smartphones
can observe and record as many ​EphIDs as possible. This precludes the use of
connection-based communication between smartphones, as establishing connections limits
the amount of exchanges of ​EphIDs ​. Instead, we rely on Bluetooth Low Energy beacons.
These beacons’ payload is 16 bytes, which technically limits the size of our system’s
EphIDs ​.

8

EphID Generation​. Smartphones generate a stream of secret day keys ​SK ​
t ​, by computing

SK ​
t ​ = H(SK ​t - 1 ​) ​,

where ​H is a cryptographic hash function. The smartphone will use the secret key ​SK ​
t

during
day ​t ​ to generate ​EphIDs ​.

Smartphones locally generate ​EphID ​
i ​s to use during day ​t as follows. Let ​t be the current

day, and ​n the number of distinct ​EphIDs we must generate for that day. Then the
smartphone computes

EphID ​
1 ​ || ... || EphID ​n ​ = PRG(PRF(SK ​t ​, “broadcast key”)),

where ​PRF is a pseudo-random function (e.g., HMAC-SHA256), ​“broadcast key” is a
fixed and public string, and PRG is a stream cipher (e.g. AES in counter mode) producing ​n

* 16 bytes, which we split into 16-byte chunks to obtain the ​n ephemeral Bluetooth
identifiers ​EphID ​ of the day.

Smartphones pick ​a random order in which to broadcast the ​EphID during the day. Each
EphID ​

 ​is broadcast for ​(24 * 60)/n ​ minutes.

Local storage of observed ​EphID​s and keys ​SK​
t

Smartphones locally store each observed ​EphID together with the corresponding proximity,
duration, and other auxiliary data, and a coarse time indication (e.g., “The morning of April
2”). See Figure AA. Besides, each device stores the keys ​SK ​

t
it generated during the past 14

days. This parameter, which defines the maximum period for which any data (both observed
and generated ​EphIDs) are stored on the device is a system parameter and is determined
by guidance from health authorities.

Decentralized proximity tracing
The decentralized proximity tracing process requires the participation of infected patient’s
smartphones, all other smartphones, the backend, and the health authority. The backend
acts ​solely​ as a communication platform and does not perform any processing.

The health authority is responsible for informing patients of (positive) test results, authorizing
uploads from phones to the backend, and determining the contagious window, i.e., during
what time the patient was contagious and might have infected others. Epidemiologists
estimate that the contagious window starts 1 to 3 days before the onset of symptoms. The
start of the contagious window determines for which time frame phones upload information.

For safety reasons, health authorities often notify patients by phone about positive test
results. Therefore we propose that when administering the test, health authorities provide
the patient with an inactive authorization code. If the test is positive, health authorities
activate the authorization code, and contact the patient to inform them of the result and ask
them to start the proximity tracing process.

9

Once the health authority has authorised the proximity tracing for an infected individual
(Figure PT, step 1), the patient instructs their phone to send to the backend the key ​SK ​

t
and

the day ​t corresponding to the first day in which the app user was considered to be
contagious (Figure PT, step 2). Note that given the key ​SK ​

t ​, everyone can compute all
ephemeral identifiers ​EphID used by the infected patient starting from the corresponding
day ​t ​ by repeating the process described in “EphID generation” above.

After reporting their current ​SK ​

t ​and day ​t ​, the smartphone of the infected patient picks a

new completely random key.

Periodically, the backend sends the pairs (​SK ​

t ​,t ​) of infected patients to all other
smartphones in the system (Figure PT, step 3). If an update is needed, it can also send to
the smartphones the latest risk-scoring algorithm parameters provided by the health
authority. Each smartphone uses this pair to reconstruct the list of ​EphIDs of an infected
person for each day ​t’ and checks if it has observed any of these ​EphIDs on day ​t’ ​in the
past (i.e., before the corresponding key ​SK ​

t
was published). Limiting the checks to a single

day ensures more efficient lookups, and limits relay attacks. If so, the smartphone owner
may be at risk. The smartphone uses the risk-scoring algorithm with its local records
corresponding to the infectious ​EphID ​, to determine the owner’s risk score. See Figure PT
step 4.

Figure PT: proximity tracing process.

Notification of risk
If the risk score computed in the previous step is below a threshold determined by the health
authority, the smartphone does nothing. Otherwise, the smartphone displays a notification

10

that the user has been in close proximity to an infected patient. The notification advises the
user on what to do and where to find more information.

Interoperability
To enable interoperability between countries, the smartphone records the countries that a
user has visited. This can either happen automatically, in the background, based on GPS
location data, Mobile carrier data, or through a manual entry by the user (e.g., if GPS was
not available or inaccurate). To learn if a user has been in contact with an infected patient,
the phone regularly requests data (containing (​SK ​

t ​,t ​) pairs from infected users) from the
backend services of all visited countries. The addresses of these backends can be added to
a config file in the app that can be easily updated if these addresses change. In case of a
positive diagnosis, ​the smartphone uploads its own pair (​SK ​

t ​,t ​) to the backends of all
visited countries.

When the smartphone determines its owner has a high risk score, the smartphone contacts
its local health authority as if it was not roaming.

Sharing data with epidemiologists
When installing the app, users are asked if they want to opt-in to data sharing with
epidemiologists. The data sharing is strictly limited to cases where there has been a contact
with an infected person. No data is shared if there has never been a contact to an infected
person. However, if users opt-in, the app will regularly (e.g., every day) upload fixed-size
dummy data to the epidemiologists to defeat traffic analysis.

After a patient receives a notification that they are at risk, the app again prompts users to
confirm their permission to share data with epidemiologists. If permission is given, at the next
transmission time, the app sends ​to a selected research center ​anonymous data about
contact events the user had ​with each infected individual ​over the past period. In the
low-cost design, infected individuals are represented by their keys ​SK ​

t ​.

For each infected contact person, the user uploads a tuple consisting of a tag (boolean
value) indicating if the user herself has been tested positive, the ​SK ​

t
of the contact and

metadata about the encounters. This metadata includes the number of encounters the user
had with the infected individual and relative timing information about each encounter, i.e.
during which phase of the infectious period the contacts occurred. Time is reported as the
number of days ​relative to the onset of symptoms (or an estimate in case there were no
symptoms)​, ​i.e., relative to the corresponding day ​t that the infected patient has reported to
the health official. This information is enough for epidemiologists to build the first degree
contact graph needed for their analysis.

No location or precise timing information about contact events will ever be shared. The data
submitted enables epidemiologists to study the ​proximity graph around an infected individual
and to understand which circumstances and encounters led to an infection. However, it does
not reveal any information about other encounters the user has had with non-infected
people.

11

Scalability
The decentralized design scales very well. For each infected user, the backend needs to
store a 32-byte key and a 2-byte day counter for the duration of the infectious window.
Storage cost at the backend is therefore not a problem. Throughout the day, smartphones
download the 32-byte keys and 2-byte day counters of newly diagnosed patients. This data
is static, and can therefore be effectively served through a content delivery network.

Smartphones download a very small amount of data every day. For 40.000 (approximately
the cumulative of 5 european countries at their contagion peak) new infections per day,
smartphones download 1.30 MB each day. For a smaller country such as Switzerland with
2.000 infections a day (at the contagion peak), smartphones need to download 66 kB each
day. They require a few seconds of computation time to regenerate the ephemeral keys
EphID ​, and to check if they are included in the local list of observed ​EphIDs ​.

12

3. Design 2: Unlinkable decentralized proximity tracing
In this section we present a variant of the low-cost design from the previous section that
offers better privacy properties at the cost of larger volume of downloads to smartphones. In
this design, there is no need to disseminate a public list of the seeds corresponding to
infectious individuals. Instead, the ephemeral identifiers of infectious individuals are hashed
and stored in a Cuckoo filter, which is then distributed to users of the system.

This design offers several advantages over the earlier proposal. It prevents malicious users
from linking the ephemeral identifiers of infectious individuals, enables infected users to
redact their identifiers corresponding to sensitive locations or times, and supports flexible
time periods in which users are considered infectious.

Setup
No setup is needed.

Generating ephemeral IDs
Smartphones generate the ephemeral Bluetooth identifier ​EphID ​

t
for epoch ​t as follows.

The smartphone draws a random 32-byte per-epoch seed ​seed ​
t ​ and sets:

EphID ​
t ​ = TRUNCATE128(H(seed ​t ​))

Where ​H is a cryptographic hash function, and ​TRUNCATE128 truncates the output to 128
bits. Smartphones store the seeds corresponding to epochs in the last 14 days. They delete
older seeds.

Local storage of observed EphIDs
For each observed ​EphID ​ the smartphone stores contact events:

● The hashed identity ​H(EphID||t) ​, where ​H ​ is a cryptographic hash function,
● The proximity,
● The duration,
● Other auxiliary data,
● And a coarse time indication (e.g., “The morning of April 2”).

We include the epoch ​t in the hash to ensure that replaying an ​EphID outside the epoch in
which it was originally broadcast can never cause a fake at-risk event (regardless of whether
the EphID corresponds to a person who is later marked as infected).

Decentralized proximity tracing
When patients are diagnosed, they upload a representation of the ​EphID ​s produced by the
smartphone during the infectious window. Unlike the initial, low-cost approach, the patient
first has the option to ​redact their identifiers, by choosing the set of epochs ​T for which the
patient wants to reveal their identifiers. For example, the patient may want to exclude
monday morning and friday night. The phone then uploads the set ​{(t, seed ​

t ​)} for all
epochs ​t ​ in ​T.

13

Periodically (e.g., every 4 hours), the backend creates a new Cuckoo filter ​F and for each
pair ​(t, seed ​

t ​) ​ uploaded by an infected patients it inserts

TRUNCATE128(H(H(seed ​
t ​) || t))

into the Cuckoo filter ​F ​. It then sends this filter to all smartphones in the system.

Each smartphone uses this filter ​F to determine if its user has been in contact with an
infected person. To this end, the phone takes all the recorded hashes and checks if they are
included in the filter ​F ​. If so, the smartphone user may be at risk. The smartphone computes
the user’s risk score by applying the risk-scoring algorithm to the local records corresponding
to identifiers included in the filter ​F ​. Cuckoo filters have a low, but non-zero, probability of
false positives, that is reporting that they contain an element that was not in the input set. In
order to avoid unnecessarily alarming users, we select the parameters of the Cuckoo filter
such that false positives are highly unlikely to occur even with heavy usage of the system
over a number of years.

The use of a Cuckoo filter hides the set of ephemeral identifiers belonging to infected
individuals from the general public. The system uses a Cuckoo filter in conjunction with
inputs that are obtained by truncation of cryptographic hashes of random values (the seeds).
The inputs to the filter are sparse amongst the set of all possible inputs (128-bit strings).
These two factors makes enumeration attacks against the filter an unattractive attack vector
for adversaries, while still making it possible for users who have observed particular
ephemeral Bluetooth identifiers to check for their inclusion in the filter. Attacks that attempt to
reverse the filter and directly recover inputs from values held in the filter do not result in
exposure of ephemeral IDs because of the extra layer of hashing that is performed on
ephemeral IDs before entering them into the filter.

Notification of risk and interoperability
Same as the low-cost approach.

Sharing data with epidemiologists
[Note: we are actively discussing with epidemiologists if the data provided by this design is
sufficient to achieve their objectives]

As in the low-cost design: users have to opt-in explicitly to share data with epidemiologists.
This sharing is limited to cases where the user has been in contact with an infected person.
If users opt-in, the app will regularly (e.g., every day) upload fixed-size dummy data to the
epidemiologists to defeat traffic analysis.

After a patient receives a notification that they are at risk, the app prompts users to confirm
their permission to share data with epidemiologists. If permission is given, at the next
transmission time, the app sends ​to a selected research center ​anonymous and aggregated
data about contact events the user had with infected individuals.

14

The app sends to the server a tag (boolean value) indicating if the user herself has been
tested positive, and a list of the ​number of unique infected ​EphID​s observed during each
day of the past 14 days.

As in the low-cost design: no location or precise timing information about contact events will
ever be shared.

Scalability
This design requires more bandwidth and storage. The backend needs to store cuckoo filters
containing the hashed identities of infected people during an infectious period. Smartphones
regularly download new cuckoo filters containing the latest hashed identities of patients. This
data is static, and can therefore be effectively served through a content delivery network.
The computational cost on the phone is likely smaller, as phones only need to do one lookup
per stored identifier per cuckoo filter sent by the backend.

Smartphones download a manageable amount of data every day. We assume that the
contagious window of infected patients is on average 5 days. For 40.000 new infections per
day (approximately the cumulative total of 5 European countries at their contagion peak)
smartphones then need to download 110 MB each day. For a smaller country, such as
Switzerland, with 2.000 infections a day (at contagion peak), smartphones need to download
5.5 MB each day (assuming a 14 day history). The computation time to check if the
previously observed identifiers are contained in the new cuckoo filter is negligible.

15

4. Security and privacy considerations

4.1 Threat model
In this section we describe the potential attackers that we assume when carrying out our
security and privacy analysis. For each of these attackers we describe their capabilities and
what kind of risk they pose for the system. In the next section, we analyze the security and
privacy of the system with respect to these adversaries.

Regular user. A typical user of the system that is assumed to be able to install and use the
application by navigating its user interface (UI). They will exclusively look at information
available via the app UI to infer private information about other users.

Tech-savvy user ​(Blackhat/Whitehat hacker, NGOs, Academic researchers, etc.)​.
This user has access to the system via the mobile App. Can set up (BT, WiFi, and Mobile)
antennas to eavesdrop locally. Can decompile/modify the app. Can have access to the
backend source code.
● (Whitehat hacker) Will investigate the App code, the information in the phone, and will

look at what information is exchanged with the server (using an antenna or software
installed on the phone, e.g., ​Lumen​) or broadcast via Bluetooth (passive).

● (Malicious) Can DOS the system (targeted or system-wide), deviate from protocols, and
actively broadcast Bluetooth identifiers.

Eavesdropper ​(Internet Service Provider, Local System administrators, Bluetooth sniffer)​.
Can observe network communication (i.e., source and destination of packages, payload,
time) and/or Bluetooth BLE broadcast messages.

● (Network adversary) Can use observed network traffic to determine the state of a
user (e.g., whether they are at-risk, infected, etc.)

● (Local Bluetooth BLE Sniffer) Can observe local Bluetooth broadcasts (possibly with
a big antenna to cover a wider area) and try to trace people.

It should be noted however that in many instances, for individuals or companies to use data
in this way, such as to collect data about passers-by to try and estimate their infection status
based on the announced identifiers, will fall foul of a range of existing national and European
laws around data protection, ePrivacy and computer misuse.

Health authority. ​Receives information about infected people as part of their normal
operations to diagnose patients. The health authority learns information about at-risk people
only when these at-risk people themselves reach out to the health authority (e.g., after
receiving a notification from their app).

Epidemiologists. ​Receive and analyse data about interactions between infected and at-risk
users. Epidemiologists and related research groups are not in direct contact with app users
and data is shared with them on a voluntary basis. They are mainly interested in learning the
proximity graph around an infected user but can combine background knowledge about
individual users with the inferred graph data to learn more about infected and at-risk users.

https://haystack.mobi/

16

Backend. ​Can access all data stored at the servers. Moreover, the backend can query data
from the mobile app in the same way that it would do during normal operations (in our
system, it can only send). They could also change the code of their backend software and
the code of the mobile apps. We assume they will not modify the mobile app because doing
so would be detectable. They can combine and correlate information, request information
from apps, combine with other public information to learn (co-)location information of
individuals.

State-level adversary (Law enforcement, intelligence agencies). Has the combined
capabilities of the tech-savvy user and the eavesdropper. In addition, a state-level adversary
can obtain subpoenas that give them the capabilities of the health authority, epidemiologists
or the backend. Their goal is to obtain information about the population or to target particular
individuals. They may be interested in past information, already stored in the system, or
future information that will enable them to trace target individuals based on observed
EphIDs ​.

4.2 Privacy

Privacy concerns
Global interaction graph. The global interaction graph reflects the social relationships of all
users in the system. A labelled edge indicates an interaction between two adjacent users at
a specific time. Knowledge of this graph is not necessary for proximity tracing nor for
analyzing the spread of SARS-CoV-2. Therefore, ​no party needs to learn the global
interaction graph. Only the relevant subset of this graph, such as for example the proximity
graph (below), should be revealed to the authorised entities.

Proximity graph. ​The proximity graph is a subset of the global interaction graph. It encodes
contacts between infected users and others individuals. Every edge is adjacent to at least
one infected patient. Edges can be labeled with coarse-grained timing information (e.g.,
“contact on the 4th of April”). This information is ​essential for epidemiologists but not for any
other party in the system.

Infected individuals. ​Only the individuals themselves, and the health authority, need to
know that they are infected with SARS-CoV-2. No other parties in the system need to learn
this information. In particular, infected users do not need to know which of the individuals
they have been in contact with are infected.

At-risk individuals. ​At-risk individuals are people that have recently been in contact with
somebody who has been infected with SARS-CoV-2. At-risk individuals need to know that
they are at risk so that they can take appropriate measures. The health authority needs to
know who is at risk so that they can notify them. No other parties in the system need to know
this information.

17

Location traceability. ​To perform proximity tracing or to analyze the virus’ spread, location
traces are not required, e.g. GPS coordinates. Therefore, no party in the system needs to
have access to them, or be able to easily trace individuals based on the Bluetooth BLE
signals that the apps broadcast.

Privacy analysis of low-cost design
Interaction graph. ​The system does not reveal any information about the interaction
between two users to any entity other than the two users themselves. The ​EphIDs ​revealed
by infected users do not allow any inference about the people they have been in contact
with. The system thus prevents any one party from learning the interaction graph.

Proximity graph. ​By construction, the proximity graph (containing interactions between
infected patients and other users) is only revealed to epidemiologists, with the specific,
separate consent of a user, and not to any other party.

Location traceability. ​In our low-cost design the ​EphIDs of all users are perfectly
unlinkable, and only the smartphone that generated them knows the corresponding keys
SK ​

t ​. When the phone’s owner is diagnosed with SARS-Cov-2, the phone publishes to the
backend the key ​SK ​

t
corresponding to the first infectious day. After disclosing this

information, the phone will generate a new key at random. Given this key ​SK ​
t ​, all

corresponding ​EphIDs ​ of the infected person are linkable during the infectious period.

As a result, tech-savvy users, eavesdroppers, and state-level adversaries can ​locally track
infected patients during the (earlier) window in which the identifiers broadcasted via
Bluetooth are linkable. To do so, the attacker uses strategically placed Bluetooth receivers
and recording devices to receive EphIDs. The app’s Bluetooth broadcasts of non-infected
people and infected people outside the infectious window remain unlinkable.

At-risk individuals. ​The keys revealed to the server by infected people ​are independent of
their contacts, i.e., the people they interacted with. They therefore do not give any
information about people at risk.

Smartphones locally compute at-risk status and notify their users.

If the user consents, the smartphone uploads anonymized data about the user’s encounters
with infected individuals to epidemiologists. However, the information shared does not
include the submitter pseudonym and does not allow linking contact events to identities. This
enables epidemiologists to study the spread of the virus through the proximity graph.

Infected individuals. ​Any proximity tracing mechanism that informs a user that he/she has
been in contact with an infected person inherently reveals a piece of information to the
person at risk: one of the people they interacted with has been infected. For the purpose of
this analysis we will divide these people in three categories:

- Close individuals​: Family, friends, or colleagues with whom the at-risk individual
spends long periods of time. If these people are infected, they ​will inform the at-risk

18

user personally about their infection ​if they have spent time together. It is common
practice that the authorities ask COVID-19 patients to notify any contact person at
risk they remember.

- Routine-sharing individuals​: People who share an activity with the at-risk individual
such as riding a bus every day, supermarket tellers, etc. Infected individuals in this
group will likely not remember having been in contact with them and therefore will not
(and can not) notify the at-risk individual.

- Anonymous individuals: People that the user sees sporadically. These people cannot
be re-identified as their identities are unknown to the at-risk individual. They are
therefore out of the scope for this analysis.

As close individuals will reveal themselves, there is no extra information that an at-risk
individual can gain about the infection status of this group by exploiting the app. Anonymous
infected people cannot be identified, so their privacy is also not at stake. In the remainder of
this analysis we thus focus on routine-sharing individuals.

First, and foremost, the app in normal operation does not reveal to users anything about the
EphIDs downloaded from the backend. Therefore, a curious user, who only uses the
standard interface of the app, cannot learn who is infected. As this user does not perform
further actions, they cannot obtain any further information about who is infected other than
the information provided to them through app notifications, or by infected individuals
themselves.

On the other end, a proactive tech-savvy person can abuse ​any proximity tracing
mechanism to narrow down the group of individuals they have been in contact with to
infected individuals. To do so they must, 1) they keep a detailed log of who they saw when.
2) they register many accounts in the proximity tracing system, and use each account for
proximity tracing during a short time window. When one of these accounts is notified, the
attacker can link the account identifier back to the time-window in which the contact with an
infected individual occurred. The attacker can correlate this information with the detailed log
to narrow down who in their list of contacts is now infected. This attack ​is inherent to any
proximity-based notification system, as the adversary only uses the fact that they are
notified together with additional information gathered by their phone or other means.

In the decentralized system, tech-savvy adversaries can make this inference without having
to create multiple accounts. To determine when they interacted with an infected individual,
they ​proactively modify the app to store detailed logs of which ​EphID they received and
when, and cross reference this list with the ​EphID ​s they computed for each infected person.
They then correlate these infection times with their log of who they saw when as before.

Tech-savvy users can also attempt a retroactive attack in which they attempt reidentification
based on linkage, without the need to collect additional information in advance. The
retroactive attacker only uses information stored by the app and auxiliary knowledge about
the whereabouts of routine-sharing individuals during the infectious period. The data stored
in the app provides coarse timing information when a specific ​EphID ​has been observed
(e.g., up to 8 hour time windows). A tech-savvy at-risk user could leverage this information to

19

single out an infected individual based on matching observed ​EphID ​s ​to the background
knowledge about whom the at-risk user was with during this time window. A combination of
multiple time windows might be enough to uniquely identify whom the infected ​EphID ​s
belong to. However, since smartphones broadcast the daily set of ​EphIDs in random order,
the attacker cannot use the published keys ​SK ​

t
to narrow down this coarse time-window.

This decreases the likelihood that she will be able to successfully identify the infected
individual in her contact list.

Furthermore, an adversary operating its own BLE equipment from a single location can
collect ​EphIDs within 20-100m range, depending on the phone output power and
environment. When combining this list with the ​EphID ​s that can be computed from the SK

downloaded to the phone, an adversary could estimate the percentage of infected people in
a small radius of 50m. If in addition, the adversary has a camera, he can capture images and
potentially re-identify those people.

As for at-risk users, the pattern associated with the upload of identifiers to the server would
reveal infected users to network eavesdroppers (ISP, curious WiFi provider) and Tech-savvy
adversary. If these adversaries can bind the observed IP to a more stable identifier such as
an ISP subscription number, then they can de-anonymize the infected user.

Summary​. For an adversarial at-risk user to learn which infected individuals they have been
in contact with, the following conditions must all be met:

- An adversary has to have access to a fine-grained log of who they have seen when
and where.

- An adversary has to either modify the application to store fine-grained time
measurements alongside each observed ​EphID or rely on the coarse time window
given by the unmodified implementation

- The adversary and the infected individual must be alone for a long enough duration.
- If there are other people around, whether they are running the app or not, the

adversary cannot be certain of who is the infector unless the adversary sees this
infector in a large enough number of epochs.

Note that if, in addition to these conditions, the adversary can create multiple accounts, then
this adversary can identify the infector ​regardless of the design of the proximity tracing
system.

We stress that in any case, having been close to an infected person is not a proof of
causality regarding an infection. Moreover it is worth noting that reidentifying individuals and
inferring their health status as a private entity without their permission would likely violate
data protection law and, potentially, computer misuse law, which would further increase the
cost and risk of undertaking this attack.

Mitigations​. In the current setting, tech-savvy users can download and analyze the data of
infected IDs.

Another possible mitigation is the use of local trusted execution environments (TEEs) that,
on each phone download and decrypt the list of infected ​EphID ​s and compute the local risk

20

scores by cross referencing the list of infected EphIDs with the collected beacons, and
returning a risk-score to the app. Instead on the phone, the user could also delegate this
functionality to a TEE that she explicitly trusts. Modern phones are equipped with TEE
functionality and TEEs are already used to harden smartphone kernels against attacks and
to store cryptographic keys. TEEs require buy-in from mobile platform providers (Apple,
Google) and, for Android, the device manufacturers (Samsung, Huawei, etc.). The TEEs are
well protected and hard to attack even for tech-savvy users. While it is not impossible to leak
this information, it is unlikely. We think such a mitigation is worthwhile in a later version of the
proximity tracing system to further increase privacy guarantees. Other mitigation techniques
could include the use of Private Information Retrieval and Private Set Intersection
techniques.

Such technical measures as well as non-technical measures (e.g., banning modified
applications from the market) could be introduced in case that the identification of infected
individuals would become a threat to the system operation and to the involved users. The
introduction of such measures depends on the overall risk assessment.

Furthermore, the transmit power of BLE beacons needs to be reduced in order to limit
exposure and risks related to eavesdropping attacks.

Finally, we note that if a small, extremely cautious portion of the population is concerned with
these attacks and decides not to participate, this will not greatly impair the effectiveness of
the deployment. As long as a large portion of the population runs the app, the number of
at-risk identifications will be large enough to significantly reduce the rate of infections.

Privacy analysis of unlinkable design
The privacy of the unlinkable design is slightly better than that of the low-cost design. The
design provides the same level of protection for the interaction graph (nobody learns it) and
the proximity graph (only] epidemiologists learn it). We address the remaining differences
point by point.

Location traceability. ​In this unlinkable design, the ​EphIDs remain unlinkable for all users
against a local attacker. This unlinkability also holds for infected patients, so long as the
server is honest. However, if the server is malicious, then it can infer which ephemeral
identifiers belong to an infected user through timing information or other metadata created
when their ephemeral identifiers are uploaded to the server.

At-risk individuals. ​The seeds revealed to the server by infected people in the unlinkable
design ​are independent of their contacts (the people they interacted with). Hence, they do
not give any information about people at risk.

The rest of the analysis is the same.

21

Infected individuals. ​Determining the infection status of individuals is slightly more difficult
in the unlinkable design because a local attacker cannot use the linkability of ​EphIDs of
infected patients to narrow down the identity of an infected patient.

Tech-savvy adversaries can still make inferences about infected patients by again modifying
the app to record which EphID they receive when. They can then use the downloaded filters
to determine which of these EphIDs correspond to an infected person and correlate their
infection times with an external log of who they saw and when. However, they do not know if
EphIDs from different epochs correspond to the same infected person or different people.

As a result of this unlinkability, estimating the percentage of infected people using BLE
equipment operating from a single location is more difficult. The adversary can receive all
EphIDs within 20-100m range. But because of unlinkability, the adversary cannot
deduplicate ​EphIDs that are later revealed to belong to an infected person: the adversary
never learns whether they belong to the ​same infected person or not. This makes estimating
a percentage of infected people much harder. The attacker either needs to mount an
antenna at a location where people only pass a fixed number of times a day, or use video
recording to do deduplication.

Retroactive attacks in the unlinkable design are equally difficult. The phone only stores
coarse time information, and while the hashed identifier contains the exact epoch in which it
was received, this information cannot be recovered because the high-entropy input EphID is
unknown.

The unlinkable design enables infected individuals to redact periods of time that they
consider sensitive and for which they prefer not to disclose their contacts. This can alleviate
concerns in a close-knit or small community in which users may be afraid that community
members learn about infections via the app, instead of informing the affected individuals in
person.

4.3 Security

Security concerns
Fake contact events. A fake contact event could make a person believe that they are
at-risk, even though they have never been in contact with an infected person. Attackers
could try to generate such fake contact events.

Suppressing at-risk contacts:​ There is a risk that either an infected person or the backend
server could prevent other individuals from learning they are at risk, e.g., by modifying the
app’s local storage. This violates the integrity of the system and would lead to an increased
health risk for contact people who rely on the system to alert them.

Prevent contact discovery: ​A malicious actor could disrupt the system, e.g. by jamming
Bluetooth signals, and prevent contact discovery.

22

Security analysis of low-cost design
Fake contact events. ​Fake contact events cannot be completely avoided. A malicious
tech-savvy user can always use a large antenna to artificially increase their broadcast range.
If the broadcasted identifiers belong to a (later) infected person, then any recipient will
conclude that they are now at risk.

An attacker can record an individual’s ephemeral identifier and broadcast it to victims at a
different location and/or time, as long as it is relayed on the same day. If that individual is
later confirmed as infected, the victims will incorrectly believe they are at risk.

An attacker could be motivated to claim another user’s EphID as their own and report that it
should be marked as infectious. This is prevented in the low-cost design by requiring users
to upload their seed values from which their EphIDs are derived. As these EphIDs are
derived from the seed using cryptographic hash functions, an attacker cannot learn another
user’s seed by observing their broadcasts.

Suppressing at-risk contacts. ​Hiding at-risk contacts is possible in any proximity tracing
system. Infected users can choose to not participate at all; to temporarily not broadcast
Bluetooth identifiers, or not to upload their data once diagnosed.

Prevent contact discovery. ​Any proximity tracing system based on Bluetooth low energy is
susceptible to jamming attacks by active adversaries. Such jamming attacks will cause the
normal recording of ​EphIDs to stop working, hence preventing contact discovery. This is an
inherent problem of this approach.

Security analysis of unlinkable design
The unlinkable design has the same security properties as the low-cost design with respect
to suppressing at-risk contacts and preventing contact discovery.

Fake contact events. ​In the unlinkable design, ephemeral identifiers are cryptographically
linked to the ​epoch in which they are broadcast. To create fake at-risk events, the attacker
must therefore receive and rebroadcast EphIDs ​within the same epoch. ​Such an “online”
relay attack is unavoidable in location tracing systems based on connectionless Bluetooth
broadcasts.

5. Comparison with centralized approach

5.1 A centralized, on-demand trace upload
In a centralized approach, instead of the smartphones gathering information to learn whether
a user is at risk, it is the central server that identifies the at-risk users and notifies these
users' smartphones.

23

As the central server needs a means to identify users, it must hold a long-term
pseudo-identifier and must generate the ephemeral pseudo-identities (​EphID ​s) to be
pushed to the smartphones. As in the decentralized design, these ​EphID ​s can be produced
and sent to the smartphones in epochs.

The smartphones broadcast their received ​EphID ​s and receive the ​EphID ​s sent by near-by
smartphones. Smartphones ​locally store all observed ​EphID ​s together with the
corresponding proximity, duration, and auxiliary data. See Figure ZZ.

As in the decentralized design, when patients have been diagnosed and are authorized, they
can instruct their smartphone to send the recorded list of observations to the server to
enable proximity tracing.

Figure ZZ: Processing and storing of observed ​EphID ​s.

Proximity tracing
The proximity tracing process is executed by the backend after a diagnosed patient has
made available to the backend their list of observations [(​EphID ​, epoch, duration)] for the
relevant period of time. The backend recovers the long-term pseudo-identifiers of the at-risk
users from the reported observed ​EphID ​s and triggers a process to identify them. See
Figure ZY.

Figure ZY: proximity tracing for centralized design

24

Interoperability
Because ​EphIDs are generated by the backend, if there exist more than one backend (e.g.,
one backend per country), each backend can only recover its own long-term
pseudo-identifiers. Therefore, if infected people have spent time in another country during
the infectious period, the backend will receive observed ​EphIDs collected in that country
that it cannot interpret. This means that the centralized design requires a “routing”
mechanism to ensure that ​EphIDs are delivered to the backends that can interpret them.
Options to achieve this goal can be to include a country code in the ​EphID ​, or to broadcast
non-interpretable ​EphIDs ​ to all other backends to make sure that it reaches home.

Sharing data with epidemiologists
In the centralized design, the smartphones never learn which contact events correspond to
contact events with infected individuals, and therefore cannot provide the relevant
information to epidemiologists. To provide this service, the central server must keep all
relevant information and share it with researchers.

5.2 Privacy comparison
Interaction graph. ​The centralized system reveals the interaction graph of each infected
user to the backend server. This is by design, as the server maps each time-stamped
ephemeral identifier back to a permanent pseudonym to enable contact tracing. The subset
of the full interaction graph learned by a server grows quickly as every newly infected user
uploads their entire contact history, which can be linked to existing nodes in the graph. Even
though the nodes in the graph are pseudonymous, this is a serious privacy concern because
graph data is easy to reidentify.

Proximity graph. ​While in the decentralized design, the proximity graph is only selectively
revealed to researchers, the centralised design allows the backend server to learn this
information as well. This violates the privacy requirement about limiting inference to
minimum necessary and to authorised entities only.

Location traceability. ​The decentralized design limits the potential for location tracking to
infected users over the course of the infectious period. In the centralised system, access to
server-side keys (e.g., the backend itself or law enforcement) enables linking ephemeral
EphID ​s to the corresponding permanent app identifier and thus tracing/identifying people
based on ​EphIDs ​ observed in the past, as well as tracing people’s future movements.

At-risk individuals. ​In the centralized design, by design, the backend recovers the identity
of an at-risk individual so as to be able to notify the health authority. The health authority will
naturally learn their identities as they need to be contacted. The epidemiologists learn the
same information as in the decentralized approach, and so does an eavesdropper who can
monitor the exchange of the phone during at-risk notification.

25

Infected individuals. The centralised and decentralised contact tracing systems share the
inherent privacy limitation that they can be exploited by an eavesdropper to learn whether an
individual user got infected and by a tech-savvy user to reveal which individuals in their
contact list might be infected now. However, the centralised design does not allow proactive
and retroactive linkage attacks by tech-savvy users to learn which contacts are infected
because the server never reveals the ​EphID ​s of infected users.

5.3 Security comparison
Fake contact events. ​Creating fake at-risk events is easy in the centralised design and can
be done retroactively by any tech-savvy infected patient. It does not require broadcasting. It
suffices to add the target ​EphID ​s to the list of observed events prior to uploading it to the
backend.

Suppressing at-risk contacts. ​Hiding at-risk contacts is possible in any proximity tracing
system.

Prevent contact discovery. ​Any proximity tracing system based on Bluetooth BLE is
susceptible to jamming attacks by active adversaries.

26

5.4 Summary of centralised/decentralised design trade-offs

 Decentralised
Low-cost design

Decentralized
Unlinkable design

Centralised

Privacy concerns (who can learn what)

Interaction graph - - Backend / State-level

Proximity graph Epidemiologist Epidemiologists Epidemiologist / Backend /
State-level

Location tracking
Of infected users

Tech-savvy user
During infectious period

- Backend / State-level
Always

Location tracking
Of non-infected users

- - Backend / State-level
Always

At-risk individuals Tech-savvy user /
Eavesdropper

Tech-savvy user /
Eavesdropper

Eavesdropper / Backend /
State-level

Infected individuals Tech-savvy user /
Eavesdropper

Tech-savvy user /
Eavesdropper

Tech-savvy user /
Eavesdropper

Percentage infected
individuals

Tech-savvy external
with antenna

Noisy estimate only
Tech-savvy with external
antenna

State-level

Security concerns

Fake contact events Yes
Physical proximity +
amplified broadcast (with
knowledge of infected EphID)

Yes
Physical proximity + amplified
broadcast (with knowledge of
infected EphID)

Yes
Infected tech-savvy user /
Backend / State-level

Suppressing at-risk
contacts

Yes
Tech-savvy user (own
contacts only)

Yes
Tech-savvy user (own
contacts only)

Yes
Tech-savvy user / Backend /
State-level

Prevent contact
discovery

Yes
Tech-savvy user + broadcast

Yes
Tech-savvy user + broadcast

Yes
Tech-savvy user / Backend /
State-level

27

6. Conclusion
In this whitepaper, we have outlined two decentralized designs to perform proximity tracing
in a privacy-preserving manner. A key requirement for both designs is to minimize exposure
of private data, limiting privacy leakage. One design results in an extremely lightweight
system, and the other provides extra privacy properties at a small increase in bandwidth. We
have also provided evaluation criteria to assess the level of privacy provided by any
proximity tracing solution.

Our decentralized designs rely on smartphones to locally compute the risk for an individual
user to have contracted the virus based on exposure to infected people. Data about specific
contact events, i.e. interactions between individuals, always remains on users’ phones and
risk calculation happens locally, according to the guidelines set by the health authorities. In
addition, users may voluntarily and privately share data about interactions with infected
people (but never contact events itself) with epidemiologists to aid the investigation into the
spread of SARS-CoV-2. The decentralised design gives users fine-grained control over the
information they share and all data sharing happens under the user’s explicit permission.

We have presented criteria for the evaluation of security and privacy aspects of proximity
tracing and have thoroughly evaluated our decentralized designs. Both designs scale to a
large number of users with minimal local computation and minimal centralization. Compared
to a central design in which the backend would compute risks and inform users, our design
protects interaction graphs from the backend, and only a determined tech-savvy adversary
can learn any extra information besides the one made visible by the app. The centralized
system, in comparison, leaks a lot of unnecessary information about contacts to the
backend, and requires large amounts of trust in a central entity.

We strongly urge governments, health authorities, and researchers that any deployment of
proximity tracing follows a decentralized design similar to our system to avoid the creation of
centralized systems that ​have the potential to become surveillance infrastructures. ​We are
currently working on a reference implementation of the decentralized design which will be
released openly during the next weeks.

