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Executive Summary 
This document proposes a system for secure and privacy-preserving proximity tracing ​(aka            
contact tracing) ​at large scale. This system provides a technological foundation to help slow              
the spread of the SARS-CoV-2 virus by simplifying and accelerating the process of notifying              
people who have been in contact with an infected person. The system design aims to               
minimise privacy and security risks for individuals and communities and guarantee the            
highest level of data protection. 
 
The goal of proximity tracing is to determine who has been in close physical proximity to an                 
infected person, without revealing the contact’s identity or where this contact occurred. To             
achieve this goal, users continually run a smartphone app that broadcasts an ephemeral,             
pseudo-random ID representing the user and also record pseudo-random IDs observed from            
smartphones in close proximity. Whenever a patient is diagnosed for COVID-19, she can             
upload some anonymous data from her phone to a central server. This step should only be                
done with the approval of a health authority and the explicit permission of the individual.               
Before, all data remains exclusively on the user’s phone. Other instances of the app can use                
the anonymous data from the server to locally compute whether the app’s user was in               
physical proximity to an infected person and the risk that an encounter led to a propagation                
of the virus. In case the app detects a high risk, it will inform the user. Additionally, the                  
system enables users to voluntarily provide information to epidemiologists, in a           
privacy-preserving manner, to enable studies of the evolution of the disease and to assist in               
finding better policies to prevent further infections. 
 
The system provides the following security and privacy protections: 
 

- Ensures data minimization​. The central server only observes anonymous identifiers          
of infected people without any proximity information; health authorities learn no           
information (beyond when a user manually reaches out to them after being notified);             
and epidemiologists obtain an anonymized proximity graph with minimal information. 

- Prevents abuse of data​. As the different entities in the system receive the minimum              
amount of information tailored to their requirements, none of them can abuse the             
data for other purposes, nor can they be coerced or subpoenaed to make other data               
available. 

- Prevents tracking of non-infected users. No entity, including the backend, can           
track ​non-infected users​ based on broadcasted ephemeral identifiers. 

- Graceful dismantling. The system will organically dismantle itself after the end of            
the epidemic. Infected patients will stop uploading their data to the central server,             
and people will stop using the app. Data on the server is removed after 14 days. 

 
We are publishing this document to seek feedback from a broad audience on the high-level               
design, its security and privacy properties, and the functionality it offers; so that further              
protection mechanisms can be added if weaknesses are identified. In particular, we seek             
feedback on the unlinkable design, as it presents overall better privacy properties. This             
document is accompanied by an overview of the data protection compliance of the design. 
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Changelog 

7 April 2020 
General: 

● Numbered sections for easier referencing. 
 
Goals and requirements: 

● Clarify app sends notification (Section 2) 
● Add detail about most relevant information for epidemiological analysis (Section          

1.1) 
● Add non-goals of the system (response issue #33, Section 1.1) 

 
Previous design (renamed: ​ ​Low-cost decentralized proximity tracing, ​in Section 2) 

● Clarification on data sent to epidemiologists (Section 2, Epidemiologists) 
● Slight tweak to design: send the day ​t ​explicitly when reporting an infected key              

SK​
t​, be clear that ​t​ is a global rather than local counter (Section 2, Setup) 

● Added second operation point in scalability (Section 2, Scalability) 
● Interoperability: added possibility of mobile network carrier, and changed hard          

coded to config file (response issue #26, Section 2, Interoperability) 
 
Added alternative design​ (​Unlinkable decentralized proximity tracing​, in Section 3) 

● Added a new design that: prevents broadcast of seeds, provides unlinkability           
between EphIDs, enables users to redact EphIDs that they do not want published 

 
Security and Privacy analysis  

● Clarified that no notification is automatically sent to the health authority (response            
issue #52) 

● Added introduction to threat model (response issue #47, Section 4.1) 
● Removed redacting mitigation from low-cost design (not possible due to hash           

chain) 
● Added replay attack to create fake contacts on low-cost design (Section 4.3) 
● Added security and privacy analysis of unlinkable design (Sections 4.2 and 4.3) 
● Added comparison with both unlinkable design and low-cost design in the table            

(Section 5.4) 
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1. Goals and requirements 

1.1 System goals 
1) Enable quick notification of contact people at risk and give guidance on next steps  
In Switzerland, the proximity tracing (also known as contact tracing) process is legally             
anchored in the ​Infection Protection Act and is carried out by the health authorities. Other               
countries have similar laws. The multi-stage procedure is ​time-consuming and requires a           
large number of trained personnel​. Under the current process, an employee of the health              
authorities conducts an in-person interview with an infected person to trace her or his              
contact history and identify other people who are likely to have contracted a disease.              
However, this process is slow and the ​results incomplete ​as usually patients are ​often              
unable to recall without gaps all contacts over a period of days​.  ​Furthermore, ​random              
contacts ​(e.g., seat neighbours in public transport) ​cannot be identified​ ​and alerted. 
 
Fortunately, most adults carry smartphones throughout the day, which opens the possibility            
of an app that can aid ​health authorities in their efforts to reduce the infection growth rate.                 
The app should provide anonymous data that enables each phone to locally calculate             
whether the smartphone owner is at risk of having contracted a virus because they were in                
close proximity to an infected individual. The app should then provide a process by which               
at-risk users can be notified. We call the process that enables the app to learn whom to                 
notify ​proximity tracing​. 
 
2) Enable epidemiologists to analyse the spread of SARS-CoV-2 
Currently, there is a ​lack of detailed data on the spread of SARS-CoV-2. Epidemiologists              
are trying to understand the key factors in the spread of the virus. More precise and timely                 
data would enable epidemiologists to improve their recommendations to policy makers and            
health authorities about the most important and effective measures during the containment            
phase of this and future pandemics. 
 
The application should provide users with the possibility to ​voluntarily share data with             
epidemiologists and research groups to enable these groups to reconstruct the interaction            
graph among infected and at-risk users (referred to as a ​proximity graph​). The information              
most relevant to the analysis carried out by epidemiologists is ​relative timing information​:             
at which phase of the infection did a contact occur? 

Out of scope goals 
The app does not aim to provide these functionalities: 

- Tracking infected patients​: once infected patients report themselves, the app does           
not attempt to track them, nor does it provide a mechanism to ensure that they               
comply with medical orders. Recall that the goal of the app is to avoid asymptomatic               
users unknowingly spreading a disease. Diagnosed users are assumed to be           
responsible and take precautions if necessary to go into public, for instance to a              
doctor appointment. We do not attempt to detect or prevent misbehavior. The reason             

 

https://www.rki.de/EN/Content/infections/inf_dis_down.pdf?__blob=publicationFile
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being that the gain in utility (one irresponsible person being under control) does not              
justify the loss of privacy for other well-behaved infected users. Moreover, this is not              
a location-tracking app and cannot determine when a user is “in public.” 

- Finding hotspots or infected users’ trajectories​: the app does not attempt to            
identify locations that have a concentration of infected people. This is a design             
decision. We limit the purpose of the application to the two goals specified above,              
which enable us to collect and process very little data. In particular it avoids collecting               
location data, which is highly sensitive and very difficult to publish in a             
privacy-preserving way.  

1.2 System requirements 
1) Functional requirements  
To achieve the system goals outlined above, the application must fulfill these functional 
requirements: 

● Completeness:​ The contact history is ​comprehensive​ regarding contact events. 
● Precision:​ Reported contact events ​must reflect​ actual physical proximity  
● Integrity: Contact events corresponding to at-risk parties are ​authentic​, i.e., users           

cannot fake contact events. 
● Confidentiality:​ A malicious actor cannot access the contact history of a user 
● Notification:​ At-risk individuals can be informed 

 
 
2) Respect and preserve digital right to privacy of individuals 
It is of paramount importance that any digital solution to enhance proximity tracing ​​respects              
the privacy of individual users and communities ​and ​​complies with relevant data            
protection guidelines such as the European General Data Protection Regulation (​see           
EDPB Statement on GDPR and COVID-19​)​. The GDPR does not stop the use of data for                
public health, particularly in times of crisis, but it still imposes a binding obligation to ensure                
that 'only personal data which are necessary for each specific purpose of the processing are               
processed' (art 25). It is therefore a legal requirement to consider, particularly in the creation               
of systems with major implications for rights and freedoms, whether such a system could be               
technically designed to use and retain less data while achieving the same effect. To this end,                
an application must minimize the amount of data collected and processed to avoid risks for               
individuals and communities, and it should reveal only the minimum information truly needed             
to each authorized entity. 
 
Furthermore, a common concern with systems like these is that the data and infrastructure              
might be used beyond its originally intended purpose. Data protection law supports the             
overarching principle of ‘purpose limitation’ — precluding the widening of purposes after the             
crisis through technical limitations. Such assurances will likely be important to achieve the             
necessary level of adoption in each country and across Europe, by providing citizens with              
the confidence and trust that their personal data is protected and used appropriately and              
carefully. Only applications that do not violate a user’s privacy ​​by design ​will be widely               
accepted. 
 

 

https://edpb.europa.eu/sites/edpb/files/files/file1/edpb_statement_2020_processingpersonaldataandcovid-19_en.pdf
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The system should provide the following guarantees: 
● Data use: ​Data collection and use should be limited to the purpose of the data               

collection: proximity tracing and proximity graph reconstruction. This implies that the           
design should avoid collecting and using any data, such as for example geolocation             
data, that is not directly related to the task of detecting a close contact between two                
individuals.  

● Controlled inference: ​Inferences about individuals and communities, such as         
information about social interactions or medical diagnosis, should be controlled to           
avoid unintended information leakage. Each authorised entity should only be able           
learn the information strictly necessary to fulfill the functional requirement. 

● Protect identities: ​The system should collect, store, and use anonymous or           
pseudonymous data that is not directly linkable to an individual’s identity where            
possible.  

● Erasure: ​The system should respect best practices in terms of data retention periods             
and delete any data that is not relevant. 

 
3) Fulfill the scalability requirements posed by a global pandemic 
SARS-CoV-2 is rapidly spreading across the globe due to the free movement of people              
across national borders and continents. As a core principle of free democracies, after the              
current confinement measures end, free movement should resume. Proximity tracing must           
support free movement across borders and scale to the world’s population. 
 
The system should give the following guarantees: 

● Scalability:​ The system scales to billions of users. 
● Interoperability:​ The system works across borders and health authorities. 

 
4) Feasibility under current technical constraints 
There is an urgency to not only design but ​implement a digital system that simplifies and                
accelerates proximity tracing in the near future. This mandates a system design that is              
mindful of the technical constraints​ posed by currently available technologies. 
 

● No reliance on new breakthroughs: ​The system should, as far as possible, only             
use techniques and methods readily available at the time of development and avoid             
relying on new breakthroughs in areas such as GPS localisation or Bluetooth            
distance measurements. 

● Widely available hardware​: The goal of high adoption of proximity tracing can only             
be achieved if both server- and client-side applications can run on widely available             
smartphones and server hardware 
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2. Design 1: Low-cost decentralized proximity tracing 
We propose a privacy-friendly, decentralized solution that reveals minimal information to the            
backend server. To facilitate proximity tracing, smartphones locally generate ​ephemeral          
Bluetooth identifiers (​EphIDs ​) and broadcast them. Other smartphones observe these          
EphIDs and store them together with the duration and a coarse indication of time (e.g., “The                
morning of April 2”). See Figure AA. 
 
The proximity tracing process is supported by a backend server that shares infection             
information with the app running on each phone. This backend server is trusted to not add or                 
remove information shared by the users and to be available. However, it is ​untrusted with               
regards to privacy (i.e., collecting and processing of personal data). In other words, the              
privacy of the users in the system does not depend on the actions of this server. Even if the                   
server is compromised or seized, privacy remains intact.  
 
When patients are diagnosed with SARS-CoV-2, they will be authorized by national health             
authorities to publish information. Then, they will instruct their phones to upload to the              
backend a compact representation of their ​EphIDs for the infectious period. The backend             
stores these ​compact representations. ​Other smartphones periodically query the backend for           
this information and reconstruct the corresponding ​EphIDs of infected patients locally. If the             
smartphone has stored a record of any of these infected EphIDs, then the smartphone’s user               
has been in contact with an infected person and the smartphone computes the owner’s risk               
score. If this score is above the threshold the smartphone initiates a notification process. 
 

 
Figure AA: Processing and storing of observed ​EphIDs ​. 

Setup 
Generating a key. ​Let ​t be the current day (e.g., indexed by some fixed starting point for the                  
system). Smartphones generate a random initial daily key ​SK ​

t ​for the first day ​t ​.  

Creating ephemeral IDs (​EphIDs​) 
EphID Constraints​. Given the completeness requirement, it is necessary that smartphones           
can observe and record as many ​EphIDs as possible. This precludes the use of              
connection-based communication between smartphones, as establishing connections limits        
the amount of exchanges of ​EphIDs ​. Instead, we rely on Bluetooth Low Energy beacons.              
These beacons’ payload is 16 bytes, which technically limits the size of our system’s              
EphIDs ​.  
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EphID Generation​. Smartphones generate a stream of secret day keys ​SK ​
t ​, by computing 

SK ​
t ​ = H( SK ​t - 1 ​ ) ​, 

where ​H is a cryptographic hash function. The smartphone will use the secret key ​SK ​
t

during                
day ​t ​ to generate ​EphIDs ​. 

Smartphones locally generate ​EphID ​
i ​s to use during day ​t as follows. Let ​t be the current                

day, and ​n the number of distinct ​EphIDs we must generate for that day. Then the                
smartphone computes 

EphID ​
1 ​ || ... || EphID ​n ​ = PRG( PRF(SK ​t ​, “broadcast key”) ), 

where ​PRF is a pseudo-random function (e.g., HMAC-SHA256), ​“broadcast key” is a            
fixed and public string, and PRG is a stream cipher (e.g. AES in counter mode) producing ​n                 

* 16 bytes, which we split into 16-byte chunks to obtain the ​n ephemeral Bluetooth               
identifiers ​EphID ​ of the day. 

Smartphones pick ​a random order in which to broadcast the ​EphID during the day. Each               
EphID ​

 ​is broadcast for ​(24 * 60)/n ​ minutes. 

Local storage of observed ​EphID​s and keys ​SK​
t
  

Smartphones locally store each observed ​EphID together with the corresponding proximity,           
duration, and other auxiliary data, and a coarse time indication (e.g., “The morning of April               
2”). See Figure AA. Besides, each device stores the keys ​SK ​

t
it generated during the past 14                 

days. This parameter, which defines the maximum period for which any data (both observed              
and generated ​EphIDs) are stored on the device is a system parameter and is determined               
by guidance from health authorities.  

Decentralized proximity tracing 
The decentralized proximity tracing process requires the participation of infected patient’s           
smartphones, all other smartphones, the backend, and the health authority. The backend            
acts ​solely​ as a communication platform and does not perform any processing. 
 
The health authority is responsible for informing patients of (positive) test results, authorizing             
uploads from phones to the backend, and determining the contagious window, i.e., during             
what time the patient was contagious and might have infected others. Epidemiologists            
estimate that the contagious window starts 1 to 3 days before the onset of symptoms. The                
start of the contagious window determines for which time frame phones upload information. 
 
For safety reasons, health authorities often notify patients by phone about positive test             
results. Therefore we propose that when administering the test, health authorities provide            
the patient with an inactive authorization code. If the test is positive, health authorities              
activate the authorization code, and contact the patient to inform them of the result and ask                
them to start the proximity tracing process. 
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Once the health authority has authorised the proximity tracing for an infected individual             
(Figure PT, step 1), the patient instructs their phone to send to the backend the key ​SK ​

t
and                  

the day ​t corresponding to the first day in which the app user was considered to be                 
contagious (Figure PT, step 2). Note that given the key ​SK ​

t ​, everyone can compute all               
ephemeral identifiers ​EphID used by the infected patient starting from the corresponding            
day ​t ​ by repeating the process described in “EphID generation” above. 
 
After reporting their current ​SK ​

t ​and day ​t ​, the smartphone of the infected patient picks a    
 

           
new completely random key. 
 
Periodically, the backend sends the pairs (​SK ​

t ​,t ​) of infected patients to all other             
smartphones in the system (Figure PT, step 3). If an update is needed, it can also send to                  
the smartphones the latest risk-scoring algorithm parameters provided by the health           
authority. Each smartphone uses this pair to reconstruct the list of ​EphIDs of an infected               
person for each day ​t’ and checks if it has observed any of these ​EphIDs on day ​t’ ​in the                    
past (i.e., before the corresponding key ​SK ​

t
was published). Limiting the checks to a single               

day ensures more efficient lookups, and limits relay attacks. If so, the smartphone owner              
may be at risk. The smartphone uses the risk-scoring algorithm with its local records              
corresponding to the infectious ​EphID ​, to determine the owner’s risk score. See Figure PT              
step 4.  
 

 
Figure PT: proximity tracing process. 

Notification of risk 
If the risk score computed in the previous step is below a threshold determined by the health                 
authority, the smartphone does nothing. Otherwise, the smartphone displays a notification           
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that the user has been in close proximity to an infected patient. The notification advises the                
user on what to do and where to find more information. 

Interoperability 
To enable interoperability between countries, the smartphone records the countries that a            
user has visited. This can either happen automatically, in the background, based on GPS              
location data, Mobile carrier data, or through a manual entry by the user (e.g., if GPS was                 
not available or inaccurate). To learn if a user has been in contact with an infected patient,                 
the phone regularly requests data (containing (​SK ​

t ​,t ​) pairs from infected users) from the             
backend services of all visited countries. The addresses of these backends can be added to               
a config file in the app that can be easily updated if these addresses change. In case of a                   
positive diagnosis, ​the smartphone uploads its own pair (​SK ​

t ​,t ​) to the backends of all              
visited countries. 
 
When the smartphone determines its owner has a high risk score, the smartphone contacts              
its local health authority as if it was not roaming. 

Sharing data with epidemiologists 
When installing the app, users are asked if they want to opt-in to data sharing with                
epidemiologists. The data sharing is strictly limited to cases where there has been a contact               
with an infected person. No data is shared if there has never been a contact to an infected                  
person. However, if users opt-in, the app will regularly (e.g., every day) upload fixed-size              
dummy data to the epidemiologists to defeat traffic analysis.  
 
After a patient receives a notification that they are at risk, the app again prompts users to                 
confirm their permission to share data with epidemiologists. If permission is given, at the next               
transmission time, the app sends ​to a selected research center ​anonymous data about              
contact events the user had ​with each infected individual ​over the past period. In the               
low-cost design, infected individuals are represented by their keys ​SK ​

t ​.  
 
For each infected contact person, the user uploads a tuple consisting of a tag (boolean               
value) indicating if the user herself has been tested positive, the ​SK ​

t
of the contact and                

metadata about the encounters. This metadata includes the number of encounters the user             
had with the infected individual and relative timing information about each encounter, i.e.             
during which phase of the infectious period the contacts occurred. Time is reported as the               
number of days ​relative to the onset of symptoms (or an estimate in case there were no                 
symptoms)​, ​i.e., relative to the corresponding day ​t that the infected patient has reported to               
the health official. This information is enough for epidemiologists to build the first degree              
contact graph needed for their analysis. 
 
No location or precise timing information about contact events will ever be shared. The data               
submitted enables epidemiologists to study the ​proximity graph around an infected individual            
and to understand which circumstances and encounters led to an infection. However, it does              
not reveal any information about other encounters the user has had with non-infected             
people. 
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Scalability 
The decentralized design scales very well. For each infected user, the backend needs to              
store a 32-byte key and a 2-byte day counter for the duration of the infectious window.                
Storage cost at the backend is therefore not a problem. Throughout the day, smartphones              
download the 32-byte keys and 2-byte day counters of newly diagnosed patients. This data              
is static, and can therefore be effectively served through a content delivery network. 
 
Smartphones download a very small amount of data every day. For 40.000 (approximately             
the cumulative of 5 european countries at their contagion peak) new infections per day,              
smartphones download 1.30 MB each day. For a smaller country such as Switzerland with              
2.000 infections a day (at the contagion peak), smartphones need to download 66 kB each               
day. They require a few seconds of computation time to regenerate the ephemeral keys              
EphID ​, and to check if they are included in the local list of observed ​EphIDs ​.  
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3. Design 2: Unlinkable decentralized proximity tracing 
In this section we present a variant of the low-cost design from the previous section that                
offers better privacy properties at the cost of larger volume of downloads to smartphones. In               
this design, there is no need to disseminate a public list of the seeds corresponding to                
infectious individuals. Instead, the ephemeral identifiers of infectious individuals are hashed           
and stored in a Cuckoo filter, which is then distributed to users of the system. 
 
This design offers several advantages over the earlier proposal. It prevents malicious users             
from linking the ephemeral identifiers of infectious individuals, enables infected users to            
redact their identifiers corresponding to sensitive locations or times, and supports flexible            
time periods in which users are considered infectious. 

Setup 
No setup is needed. 

Generating ephemeral IDs 
Smartphones generate the ephemeral Bluetooth identifier ​EphID ​

t
for epoch ​t as follows.            

The smartphone draws a random 32-byte per-epoch seed ​seed ​
t ​ and sets: 

EphID ​
t ​ = TRUNCATE128( H( seed ​t ​ ) ) 

Where ​H is a cryptographic hash function, and ​TRUNCATE128 truncates the output to 128              
bits. Smartphones store the seeds corresponding to epochs in the last 14 days. They delete               
older seeds. 

Local storage of observed EphIDs 
For each observed ​EphID ​ the smartphone stores contact events: 

● The hashed identity ​H(EphID||t) ​, where ​H ​ is a cryptographic hash function,  
● The proximity, 
● The duration, 
● Other auxiliary data, 
● And a coarse time indication (e.g., “The morning of April 2”). 

We include the epoch ​t in the hash to ensure that replaying an ​EphID outside the epoch in                  
which it was originally broadcast can never cause a fake at-risk event (regardless of whether               
the EphID corresponds to a person who is later marked as infected). 

Decentralized proximity tracing 
When patients are diagnosed, they upload a representation of the ​EphID ​s produced by the              
smartphone during the infectious window. Unlike the initial, low-cost approach, the patient            
first has the option to ​redact their identifiers, by choosing the set of epochs ​T for which the                  
patient wants to reveal their identifiers. For example, the patient may want to exclude              
monday morning and friday night. The phone then uploads the set ​{(t, seed ​

t ​)} for all               
epochs ​t ​ in ​T.  
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Periodically (e.g., every 4 hours), the backend creates a new Cuckoo filter ​F and for each                
pair ​(t, seed ​

t ​) ​ uploaded by an infected patients it inserts 

TRUNCATE128( H( H( seed ​
t ​ ) || t) ) 

into the Cuckoo filter ​F ​. It then sends this filter to all smartphones in the system. 

Each smartphone uses this filter ​F to determine if its user has been in contact with an                 
infected person. To this end, the phone takes all the recorded hashes and checks if they are                 
included in the filter ​F ​. If so, the smartphone user may be at risk. The smartphone computes                 
the user’s risk score by applying the risk-scoring algorithm to the local records corresponding              
to identifiers included in the filter ​F ​. Cuckoo filters have a low, but non-zero, probability of                
false positives, that is reporting that they contain an element that was not in the input set. In                  
order to avoid unnecessarily alarming users, we select the parameters of the Cuckoo filter              
such that false positives are highly unlikely to occur even with heavy usage of the system                
over a number of years. 

The use of a Cuckoo filter hides the set of ephemeral identifiers belonging to infected               
individuals from the general public. The system uses a Cuckoo filter in conjunction with              
inputs that are obtained by truncation of cryptographic hashes of random values (the seeds).              
The inputs to the filter are sparse amongst the set of all possible inputs (128-bit strings).                
These two factors makes enumeration attacks against the filter an unattractive attack vector             
for adversaries, while still making it possible for users who have observed particular             
ephemeral Bluetooth identifiers to check for their inclusion in the filter. Attacks that attempt to               
reverse the filter and directly recover inputs from values held in the filter do not result in                 
exposure of ephemeral IDs because of the extra layer of hashing that is performed on               
ephemeral IDs before entering them into the filter. 

Notification of risk and interoperability 
Same as the low-cost approach. 

Sharing data with epidemiologists 
[Note: we are actively discussing with epidemiologists if the data provided by this design is               
sufficient to achieve their objectives] 
 
As in the low-cost design: users have to opt-in explicitly to share data with epidemiologists.               
This sharing is limited to cases where the user has been in contact with an infected person.                 
If users opt-in, the app will regularly (e.g., every day) upload fixed-size dummy data to the                
epidemiologists to defeat traffic analysis.  
 
After a patient receives a notification that they are at risk, the app prompts users to confirm                 
their permission to share data with epidemiologists. If permission is given, at the next              
transmission time, the app sends ​to a selected research center ​anonymous and aggregated             
data about contact events the user had with infected individuals. 
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The app sends to the server a tag (boolean value) indicating if the user herself has been                 
tested positive, and a list of the ​number of unique infected ​EphID​s observed during each               
day of the past 14 days. 
 
As in the low-cost design: no location or precise timing information about contact events will               
ever be shared. 

Scalability 
This design requires more bandwidth and storage. The backend needs to store cuckoo filters              
containing the hashed identities of infected people during an infectious period. Smartphones            
regularly download new cuckoo filters containing the latest hashed identities of patients. This             
data is static, and can therefore be effectively served through a content delivery network.              
The computational cost on the phone is likely smaller, as phones only need to do one lookup                 
per stored identifier per cuckoo filter sent by the backend. 
 
Smartphones download a manageable amount of data every day. We assume that the             
contagious window of infected patients is on average 5 days. For 40.000 new infections per               
day (approximately the cumulative total of 5 European countries at their contagion peak)             
smartphones then need to download 110 MB each day. For a smaller country, such as               
Switzerland, with 2.000 infections a day (at contagion peak), smartphones need to download             
5.5 MB each day (assuming a 14 day history). The computation time to check if the                
previously observed identifiers are contained in the new cuckoo filter is negligible. 
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4. Security and privacy considerations 

4.1 Threat model 
In this section we describe the potential attackers that we assume when carrying out our               
security and privacy analysis. For each of these attackers we describe their capabilities and              
what kind of risk they pose for the system. In the next section, we analyze the security and                  
privacy of the system with respect to these adversaries. 
 
Regular user. A typical user of the system that is assumed to be able to install and use the                   
application by navigating its user interface (UI). They will exclusively look at information             
available via the app UI to infer private information about other users. 
 
Tech-savvy user ​(Blackhat/Whitehat hacker, NGOs, Academic researchers, etc.)​.  
This user has access to the system via the mobile App. Can set up (BT, WiFi, and Mobile)                  
antennas to eavesdrop locally. Can decompile/modify the app. Can have access to the             
backend source code. 
● (Whitehat hacker) Will investigate the App code, the information in the phone, and will              

look at what information is exchanged with the server (using an antenna or software              
installed on the phone, e.g., ​Lumen​) or broadcast via Bluetooth (passive).  

● (Malicious) Can DOS the system (targeted or system-wide), deviate from protocols, and            
actively broadcast Bluetooth identifiers. 

 
Eavesdropper ​(Internet Service Provider, Local System administrators, Bluetooth sniffer)​.  
Can observe network communication (i.e., source and destination of packages, payload,           
time) and/or Bluetooth BLE broadcast messages. 

● (Network adversary) Can use observed network traffic to determine the state of a             
user (e.g., whether they are at-risk, infected, etc.) 

● (Local Bluetooth BLE Sniffer) Can observe local Bluetooth broadcasts (possibly with           
a big antenna to cover a wider area) and try to trace people. 

It should be noted however that in many instances, for individuals or companies to use data 
in this way, such as to collect data about passers-by to try and estimate their infection status 
based on the announced identifiers, will fall foul of a range of existing national and European 
laws around data protection, ePrivacy and computer misuse. 

 
Health authority. ​Receives information about infected people as part of their normal            
operations to diagnose patients. The health authority learns information about at-risk people            
only when these at-risk people themselves reach out to the health authority (e.g., after              
receiving a notification from their app). 
 
Epidemiologists. ​Receive and analyse data about interactions between infected and at-risk           
users. Epidemiologists and related research groups are not in direct contact with app users              
and data is shared with them on a voluntary basis. They are mainly interested in learning the                 
proximity graph around an infected user but can combine background knowledge about            
individual users with the inferred graph data to learn more about infected and at-risk users.  

 

https://haystack.mobi/
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Backend. ​Can access all data stored at the servers. Moreover, the backend can query data               
from the mobile app in the same way that it would do during normal operations (in our                 
system, it can only send). They could also change the code of their backend software and                
the code of the mobile apps. We assume they will not modify the mobile app because doing                 
so would be detectable. They can combine and correlate information, request information            
from apps, combine with other public information to learn (co-)location information of            
individuals. 

 
State-level adversary (Law enforcement, intelligence agencies). Has the combined         
capabilities of the tech-savvy user and the eavesdropper. In addition, a state-level adversary             
can obtain subpoenas that give them the capabilities of the health authority, epidemiologists             
or the backend. Their goal is to obtain information about the population or to target particular                
individuals. They may be interested in past information, already stored in the system, or              
future information that will enable them to trace target individuals based on observed             
EphIDs ​. 

4.2 Privacy  

Privacy concerns 
Global interaction graph. The global interaction graph reflects the social relationships of all             
users in the system. A labelled edge indicates an interaction between two adjacent users at               
a specific time. Knowledge of this graph is not necessary for proximity tracing nor for               
analyzing the spread of SARS-CoV-2. Therefore, ​no party needs to learn the global             
interaction graph. Only the relevant subset of this graph, such as for example the proximity               
graph (below), should be revealed to the authorised entities. 
 
Proximity graph. ​The proximity graph is a subset of the global interaction graph. It encodes               
contacts between infected users and others individuals. Every edge is adjacent to at least              
one infected patient. Edges can be labeled with coarse-grained timing information (e.g.,            
“contact on the 4th of April”). This information is ​essential for epidemiologists but not for any                
other party in the system. 
 
Infected individuals. ​Only the individuals themselves, and the health authority, need to            
know that they are infected with SARS-CoV-2. No other parties in the system need to learn                
this information. In particular, infected users do not need to know which of the individuals               
they have been in contact with are infected. 
 
At-risk individuals. ​At-risk individuals are people that have recently been in contact with             
somebody who has been infected with SARS-CoV-2. At-risk individuals need to know that             
they are at risk so that they can take appropriate measures. The health authority needs to                
know who is at risk so that they can notify them. No other parties in the system need to know                    
this information. 
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Location traceability. ​To perform proximity tracing or to analyze the virus’ spread, location             
traces are not required, e.g. GPS coordinates. Therefore, no party in the system needs to               
have access to them, or be able to easily trace individuals based on the Bluetooth BLE                
signals that the apps broadcast. 

Privacy analysis of low-cost design 
Interaction graph. ​The system does not reveal any information about the interaction            
between two users to any entity other than the two users themselves. The ​EphIDs ​revealed               
by infected users do not allow any inference about the people they have been in contact                
with. The system thus prevents any one party from learning the interaction graph. 
 
Proximity graph. ​By construction, the proximity graph (containing interactions between          
infected patients and other users) is only revealed to epidemiologists, with the specific,             
separate consent of a user, and not to any other party. 
 
Location traceability. ​In our low-cost design the ​EphIDs of all users are perfectly             
unlinkable, and only the smartphone that generated them knows the corresponding keys            
SK ​

t ​. When the phone’s owner is diagnosed with SARS-Cov-2, the phone publishes to the              
backend the key ​SK ​

t
corresponding to the first infectious day. After disclosing this             

information, the phone will generate a new key at random. Given this key ​SK ​
t ​, all               

corresponding ​EphIDs ​ of the infected person are linkable during the infectious period. 
 
As a result, tech-savvy users, eavesdroppers, and state-level adversaries can ​locally track            
infected patients during the (earlier) window in which the identifiers broadcasted via            
Bluetooth are linkable. To do so, the attacker uses strategically placed Bluetooth receivers             
and recording devices to receive EphIDs. The app’s Bluetooth broadcasts of non-infected            
people and infected people outside the infectious window remain unlinkable. 
 
At-risk individuals. ​The keys revealed to the server by infected people ​are independent of              
their contacts, i.e., the people they interacted with. They therefore do not give any              
information about people at risk. 
 
Smartphones locally compute at-risk status and notify their users. 
 
If the user consents, the smartphone uploads anonymized data about the user’s encounters             
with infected individuals to epidemiologists. However, the information shared does not           
include the submitter pseudonym and does not allow linking contact events to identities. This              
enables epidemiologists to study the spread of the virus through the proximity graph. 
 
Infected individuals. ​Any proximity tracing mechanism that informs a user that he/she has             
been in contact with an infected person inherently reveals a piece of information to the               
person at risk: one of the people they interacted with has been infected. For the purpose of                 
this analysis we will divide these people in three categories:  

- Close individuals​: Family, friends, or colleagues with whom the at-risk individual           
spends long periods of time. If these people are infected, they ​will inform the at-risk               
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user personally about their infection ​if they have spent time together. It is common              
practice that the authorities ask COVID-19 patients to notify any contact person at             
risk they remember. 

- Routine-sharing individuals​: People who share an activity with the at-risk individual           
such as riding a bus every day, supermarket tellers, etc. Infected individuals in this              
group will likely not remember having been in contact with them and therefore will not               
(and can not) notify the at-risk individual. 

- Anonymous individuals: People that the user sees sporadically. These people cannot           
be re-identified as their identities are unknown to the at-risk individual. They are             
therefore out of the scope for this analysis. 

 
As close individuals will reveal themselves, there is no extra information that an at-risk              
individual can gain about the infection status of this group by exploiting the app. Anonymous               
infected people cannot be identified, so their privacy is also not at stake. In the remainder of                 
this analysis we thus focus on routine-sharing individuals. 
 
First, and foremost, the app in normal operation does not reveal to users anything about the                
EphIDs downloaded from the backend. Therefore, a curious user, who only uses the             
standard interface of the app, cannot learn who is infected. As this user does not perform                
further actions, they cannot obtain any further information about who is infected other than              
the information provided to them through app notifications, or by infected individuals            
themselves.  
 
On the other end, a proactive tech-savvy person can abuse ​any proximity tracing             
mechanism to narrow down the group of individuals they have been in contact with to               
infected individuals. To do so they must, 1) they keep a detailed log of who they saw when.                  
2) they register many accounts in the proximity tracing system, and use each account for               
proximity tracing during a short time window. When one of these accounts is notified, the               
attacker can link the account identifier back to the time-window in which the contact with an                
infected individual occurred. The attacker can correlate this information with the detailed log             
to narrow down who in their list of contacts is now infected. This attack ​is inherent to any                  
proximity-based notification system, as the adversary only uses the fact that they are             
notified together with additional information gathered by their phone or other means. 
 
In the decentralized system, tech-savvy adversaries can make this inference without having            
to create multiple accounts. To determine when they interacted with an infected individual,             
they ​proactively modify the app to store detailed logs of which ​EphID they received and               
when, and cross reference this list with the ​EphID ​s they computed for each infected person.               
They then correlate these infection times with their log of who they saw when as before. 
 
Tech-savvy users can also attempt a retroactive attack in which they attempt reidentification             
based on linkage, without the need to collect additional information in advance. The             
retroactive attacker only uses information stored by the app and auxiliary knowledge about             
the whereabouts of routine-sharing individuals during the infectious period. The data stored            
in the app provides coarse timing information when a specific ​EphID ​has been observed              
(e.g., up to 8 hour time windows). A tech-savvy at-risk user could leverage this information to                

 



19 

single out an infected individual based on matching observed ​EphID ​s ​to the background             
knowledge about whom the at-risk user was with during this time window. A combination of               
multiple time windows might be enough to uniquely identify whom the infected ​EphID ​s             
belong to. However, since smartphones broadcast the daily set of ​EphIDs in random order,              
the attacker cannot use the published keys ​SK ​

t
to narrow down this coarse time-window.              

This decreases the likelihood that she will be able to successfully identify the infected              
individual in her contact list.  
 
Furthermore, an adversary operating its own BLE equipment from a single location can             
collect ​EphIDs within 20-100m range, depending on the phone output power and            
environment. When combining this list with the ​EphID ​s that can be computed from the SK               

downloaded to the phone, an adversary could estimate the percentage of infected people in              
a small radius of 50m. If in addition, the adversary has a camera, he can capture images and                  
potentially re-identify those people. 
 
As for at-risk users, the pattern associated with the upload of identifiers to the server would                
reveal infected users to network eavesdroppers (ISP, curious WiFi provider) and Tech-savvy            
adversary. If these adversaries can bind the observed IP to a more stable identifier such as                
an ISP subscription number, then they can de-anonymize the infected user. 
 
Summary​. For an adversarial at-risk user to learn which infected individuals they have been              
in contact with, the following conditions must all be met: 

- An adversary has to have access to a fine-grained log of who they have seen when                
and where. 

- An adversary has to either modify the application to store fine-grained time            
measurements alongside each observed ​EphID or rely on the coarse time window            
given by the unmodified implementation 

- The adversary and the infected individual must be alone for a long enough duration. 
- If there are other people around, whether they are running the app or not, the               

adversary cannot be certain of who is the infector unless the adversary sees this              
infector in a large enough number of epochs.  

Note that if, in addition to these conditions, the adversary can create multiple accounts, then               
this adversary can identify the infector ​regardless of the design of the proximity tracing              
system.  
 
We stress that in any case, having been close to an infected person is not a proof of                  
causality regarding an infection. Moreover it is worth noting that reidentifying individuals and             
inferring their health status as a private entity without their permission would likely violate              
data protection law and, potentially, computer misuse law, which would further increase the             
cost and risk of undertaking this attack. 
 
Mitigations​. In the current setting, tech-savvy users can download and analyze the data of              
infected IDs.  
 
Another possible mitigation is the use of local trusted execution environments (TEEs) that,             
on each phone download and decrypt the list of infected ​EphID ​s and compute the local risk                
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scores by cross referencing the list of infected EphIDs with the collected beacons, and              
returning a risk-score to the app. Instead on the phone, the user could also delegate this                
functionality to a TEE that she explicitly trusts. Modern phones are equipped with TEE              
functionality and TEEs are already used to harden smartphone kernels against attacks and             
to store cryptographic keys. TEEs require buy-in from mobile platform providers (Apple,            
Google) and, for Android, the device manufacturers (Samsung, Huawei, etc.). The TEEs are             
well protected and hard to attack even for tech-savvy users. While it is not impossible to leak                 
this information, it is unlikely. We think such a mitigation is worthwhile in a later version of the                  
proximity tracing system to further increase privacy guarantees. Other mitigation techniques           
could include the use of Private Information Retrieval and Private Set Intersection            
techniques.  
 
Such technical measures as well as non-technical measures (e.g., banning modified           
applications from the market) could be introduced in case that the identification of infected              
individuals would become a threat to the system operation and to the involved users. The               
introduction of such measures depends on the overall risk assessment.  
 
Furthermore, the transmit power of BLE beacons needs to be reduced in order to limit               
exposure and risks related to eavesdropping attacks.  
 
Finally, we note that if a small, extremely cautious portion of the population is concerned with                
these attacks and decides not to participate, this will not greatly impair the effectiveness of               
the deployment. As long as a large portion of the population runs the app, the number of                 
at-risk identifications will be large enough to significantly reduce the rate of infections. 

Privacy analysis of unlinkable design 
The privacy of the unlinkable design is slightly better than that of the low-cost design. The                
design provides the same level of protection for the interaction graph (nobody learns it) and               
the proximity graph (only ] epidemiologists learn it). We address the remaining differences             
point by point. 
 
Location traceability. ​In this unlinkable design, the ​EphIDs remain unlinkable for all users             
against a local attacker. This unlinkability also holds for infected patients, so long as the               
server is honest. However, if the server is malicious, then it can infer which ephemeral               
identifiers belong to an infected user through timing information or other metadata created             
when their ephemeral identifiers are uploaded to the server. 
 
At-risk individuals. ​The seeds revealed to the server by infected people in the unlinkable              
design ​are independent of their contacts (the people they interacted with). Hence, they do              
not give any information about people at risk. 
 
The rest of the analysis is the same. 
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Infected individuals. ​Determining the infection status of individuals is slightly more difficult            
in the unlinkable design because a local attacker cannot use the linkability of ​EphIDs of               
infected patients to narrow down the identity of an infected patient. 
 
Tech-savvy adversaries can still make inferences about infected patients by again modifying            
the app to record which EphID they receive when. They can then use the downloaded filters                
to determine which of these EphIDs correspond to an infected person and correlate their              
infection times with an external log of who they saw and when. However, they do not know if                  
EphIDs from different epochs correspond to the same infected person or different people. 
 
As a result of this unlinkability, estimating the percentage of infected people using BLE              
equipment operating from a single location is more difficult. The adversary can receive all              
EphIDs within 20-100m range. But because of unlinkability, the adversary cannot           
deduplicate ​EphIDs that are later revealed to belong to an infected person: the adversary              
never learns whether they belong to the ​same infected person or not. This makes estimating               
a percentage of infected people much harder. The attacker either needs to mount an              
antenna at a location where people only pass a fixed number of times a day, or use video                  
recording to do deduplication. 
 
Retroactive attacks in the unlinkable design are equally difficult. The phone only stores             
coarse time information, and while the hashed identifier contains the exact epoch in which it               
was received, this information cannot be recovered because the high-entropy input EphID is             
unknown. 
 
The unlinkable design enables infected individuals to redact periods of time that they             
consider sensitive and for which they prefer not to disclose their contacts. This can alleviate               
concerns in a close-knit or small community in which users may be afraid that community               
members learn about infections via the app, instead of informing the affected individuals in              
person. 

4.3 Security 

Security concerns 
Fake contact events. A fake contact event could make a person believe that they are               
at-risk, even though they have never been in contact with an infected person. Attackers              
could try to generate such fake contact events. 
 
Suppressing at-risk contacts:​ There is a risk that either an infected person or the backend 
server could prevent other individuals from learning they are at risk, e.g., by modifying the 
app’s local storage. This violates the integrity of the system and would lead to an increased 
health risk for contact people who rely on the system to alert them. 
 
Prevent contact discovery: ​A malicious actor could disrupt the system, e.g. by jamming             
Bluetooth signals, and prevent contact discovery.  
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Security analysis of low-cost design 
Fake contact events. ​Fake contact events cannot be completely avoided. A malicious            
tech-savvy user can always use a large antenna to artificially increase their broadcast range.              
If the broadcasted identifiers belong to a (later) infected person, then any recipient will              
conclude that they are now at risk. 
 
An attacker can record an individual’s ephemeral identifier and broadcast it to victims at a               
different location and/or time, as long as it is relayed on the same day. If that individual is                  
later confirmed as infected, the victims will incorrectly believe they are at risk.  
 
An attacker could be motivated to claim another user’s EphID as their own and report that it                 
should be marked as infectious. This is prevented in the low-cost design by requiring users               
to upload their seed values from which their EphIDs are derived. As these EphIDs are               
derived from the seed using cryptographic hash functions, an attacker cannot learn another             
user’s seed by observing their broadcasts.  
 
Suppressing at-risk contacts. ​Hiding at-risk contacts is possible in any proximity tracing            
system. Infected users can choose to not participate at all; to temporarily not broadcast              
Bluetooth identifiers, or not to upload their data once diagnosed.  
 
Prevent contact discovery. ​Any proximity tracing system based on Bluetooth low energy is             
susceptible to jamming attacks by active adversaries. Such jamming attacks will cause the             
normal recording of ​EphIDs to stop working, hence preventing contact discovery. This is an              
inherent problem of this approach. 

Security analysis of unlinkable design 
The unlinkable design has the same security properties as the low-cost design with respect              
to suppressing at-risk contacts and preventing contact discovery. 
 
Fake contact events. ​In the unlinkable design, ephemeral identifiers are cryptographically           
linked to the ​epoch in which they are broadcast. To create fake at-risk events, the attacker                
must therefore receive and rebroadcast EphIDs ​within the same epoch. ​Such an “online”             
relay attack is unavoidable in location tracing systems based on connectionless Bluetooth            
broadcasts. 

5. Comparison with centralized approach 

5.1 A centralized, on-demand trace upload 
In a centralized approach, instead of the smartphones gathering information to learn whether             
a user is at risk, it is the central server that identifies the at-risk users and notifies these                  
users' smartphones. 
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As the central server needs a means to identify users, it must hold a long-term               
pseudo-identifier and must generate the ephemeral pseudo-identities (​EphID ​s) to be          
pushed to the smartphones. As in the decentralized design, these ​EphID ​s can be produced              
and sent to the smartphones in epochs. 
 
The smartphones broadcast their received ​EphID ​s and receive the ​EphID ​s sent by near-by             
smartphones. Smartphones ​locally store all observed ​EphID ​s together with the          
corresponding proximity, duration, and auxiliary data. See Figure ZZ.  
 
As in the decentralized design, when patients have been diagnosed and are authorized, they              
can instruct their smartphone to send the recorded list of observations to the server to               
enable proximity tracing. 
 

 
Figure ZZ: Processing and storing of observed ​EphID ​s. 

Proximity tracing 
The proximity tracing process is executed by the backend after a diagnosed patient has              
made available to the backend their list of observations [(​EphID ​, epoch, duration)] for the              
relevant period of time. The backend recovers the long-term pseudo-identifiers of the at-risk             
users from the reported observed ​EphID ​s and triggers a process to identify them. See              
Figure ZY. 

 

 
Figure ZY: proximity tracing for centralized design 
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Interoperability  
Because ​EphIDs are generated by the backend, if there exist more than one backend (e.g.,               
one backend per country), each backend can only recover its own long-term            
pseudo-identifiers. Therefore, if infected people have spent time in another country during            
the infectious period, the backend will receive observed ​EphIDs collected in that country             
that it cannot interpret. This means that the centralized design requires a “routing”             
mechanism to ensure that ​EphIDs are delivered to the backends that can interpret them.              
Options to achieve this goal can be to include a country code in the ​EphID ​, or to broadcast                  
non-interpretable ​EphIDs ​ to all other backends to make sure that it reaches home.  

Sharing data with epidemiologists 
In the centralized design, the smartphones never learn which contact events correspond to             
contact events with infected individuals, and therefore cannot provide the relevant           
information to epidemiologists. To provide this service, the central server must keep all             
relevant information and share it with researchers. 

5.2 Privacy comparison 
Interaction graph. ​The centralized system reveals the interaction graph of each infected            
user to the backend server. This is by design, as the server maps each time-stamped               
ephemeral identifier back to a permanent pseudonym to enable contact tracing. The subset             
of the full interaction graph learned by a server grows quickly as every newly infected user                
uploads their entire contact history, which can be linked to existing nodes in the graph. Even                
though the nodes in the graph are pseudonymous, this is a serious privacy concern because               
graph data is easy to reidentify. 
 
Proximity graph. ​While in the decentralized design, the proximity graph is only selectively             
revealed to researchers, the centralised design allows the backend server to learn this             
information as well. This violates the privacy requirement about limiting inference to            
minimum necessary and to authorised entities only. 
 
Location traceability. ​The decentralized design limits the potential for location tracking to            
infected users over the course of the infectious period. In the centralised system, access to               
server-side keys (e.g., the backend itself or law enforcement) enables linking ephemeral            
EphID ​s to the corresponding permanent app identifier and thus tracing/identifying people           
based on ​EphIDs ​ observed in the past, as well as tracing people’s future movements.  
 
At-risk individuals. ​In the centralized design, by design, the backend recovers the identity             
of an at-risk individual so as to be able to notify the health authority. The health authority will                  
naturally learn their identities as they need to be contacted. The epidemiologists learn the              
same information as in the decentralized approach, and so does an eavesdropper who can              
monitor the exchange of the phone during at-risk notification. 
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Infected individuals. The centralised and decentralised contact tracing systems share the           
inherent privacy limitation that they can be exploited by an eavesdropper to learn whether an               
individual user got infected and by a tech-savvy user to reveal which individuals in their               
contact list might be infected now. However, the centralised design does not allow proactive              
and retroactive linkage attacks by tech-savvy users to learn which contacts are infected             
because the server never reveals the ​EphID ​s of infected users. 

5.3 Security comparison 
Fake contact events. ​Creating fake at-risk events is easy in the centralised design and can               
be done retroactively by any tech-savvy infected patient. It does not require broadcasting. It              
suffices to add the target ​EphID ​s to the list of observed events prior to uploading it to the                  
backend. 
 
Suppressing at-risk contacts. ​Hiding at-risk contacts is possible in any proximity tracing            
system.  
 
Prevent contact discovery. ​Any proximity tracing system based on Bluetooth BLE is            
susceptible to jamming attacks by active adversaries.  
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5.4 Summary of centralised/decentralised design trade-offs 
 

 Decentralised 
Low-cost design 

Decentralized 
Unlinkable design 

Centralised 

Privacy concerns (who can learn what) 

Interaction graph - - Backend / State-level 

Proximity graph Epidemiologist Epidemiologists Epidemiologist / Backend / 
State-level 

Location tracking 
Of infected users 

Tech-savvy user 
During infectious period 

- Backend / State-level 
Always 

Location tracking 
Of non-infected users 

- - Backend / State-level 
Always 

At-risk individuals Tech-savvy user / 
Eavesdropper 

Tech-savvy user / 
Eavesdropper 

Eavesdropper / Backend / 
State-level 

Infected individuals Tech-savvy user / 
Eavesdropper 

Tech-savvy user / 
Eavesdropper 

Tech-savvy user / 
Eavesdropper 

Percentage infected 
individuals 

Tech-savvy external 
with antenna 

Noisy estimate only 
Tech-savvy with external 
antenna 

State-level 

Security concerns    

Fake contact events Yes 
Physical proximity + 
amplified broadcast (with 
knowledge of infected EphID) 

Yes 
Physical proximity + amplified 
broadcast (with knowledge of 
infected EphID) 

Yes 
Infected tech-savvy user / 
Backend / State-level 

Suppressing at-risk 
contacts 

Yes 
Tech-savvy user (own 
contacts only) 

Yes 
Tech-savvy user (own 
contacts only) 

Yes 
Tech-savvy user / Backend / 
State-level 

Prevent contact 
discovery 

Yes 
Tech-savvy user + broadcast 

Yes 
Tech-savvy user + broadcast 

Yes 
Tech-savvy user / Backend / 
State-level 
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6. Conclusion  
In this whitepaper, we have outlined two decentralized designs to perform proximity tracing             
in a privacy-preserving manner. A key requirement for both designs is to minimize exposure              
of private data, limiting privacy leakage. One design results in an extremely lightweight             
system, and the other provides extra privacy properties at a small increase in bandwidth. We               
have also provided evaluation criteria to assess the level of privacy provided by any              
proximity tracing solution.  
 
Our decentralized designs rely on smartphones to locally compute the risk for an individual              
user to have contracted the virus based on exposure to infected people. Data about specific               
contact events, i.e. interactions between individuals, always remains on users’ phones and            
risk calculation happens locally, according to the guidelines set by the health authorities. In              
addition, users may voluntarily and privately share data about interactions with infected            
people (but never contact events itself) with epidemiologists to aid the investigation into the              
spread of SARS-CoV-2. The decentralised design gives users fine-grained control over the            
information they share and all data sharing happens under the user’s explicit permission. 
 
We have presented criteria for the evaluation of security and privacy aspects of proximity              
tracing and have thoroughly evaluated our decentralized designs. Both designs scale to a             
large number of users with minimal local computation and minimal centralization. Compared            
to a central design in which the backend would compute risks and inform users, our design                
protects interaction graphs from the backend, and only a determined tech-savvy adversary            
can learn any extra information besides the one made visible by the app. The centralized               
system, in comparison, leaks a lot of unnecessary information about contacts to the             
backend, and requires large amounts of trust in a central entity. 
 
We strongly urge governments, health authorities, and researchers that any deployment of            
proximity tracing follows a decentralized design similar to our system to avoid the creation of               
centralized systems that ​have the potential to become surveillance infrastructures. ​We are            
currently working on a reference implementation of the decentralized design which will be             
released openly during the next weeks.  

 


