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Executive summary 

In this document we describe security mechanisms that can be added to Proximity                         
Tracing applications to ensure that the security and privacy properties provided by the                         
protocols are not undermined by other components of the system. In particular we                         
provide recommendations to protect: 

- Sensitive communications between app and server. We provide guidelines to                   
establish dummy traffic to ensure that network traffic that is associated with                       
sensitive information (COVID-positive status, notified users) cannot be recognized                 
by passive observers. 
 

- Communications between backend and smartphones. We analyse the use of                   
attestation as a support mechanism to protect the downstream communication.                   
Attestation must be carefully considered as it increases the dependency on                     
closed-source components and may not be available in all phones. 
 

- Metadata protection at the server. We analyse what information could be                     
collected by a server and provide recommendations in regards to logging and                       
storage. 
 

- Validation of notifications. We describe a simple mechanism to validate that when                       
a user claims to have received a notification that the user is in possession of a                               
phone for which the app has actually generated such a notification. 
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Dummy traffic: protecting against network adversaries 

Adversaries that can observe network communication can observe network traffic                   
between a user’s smartphone and the backend server or servers. Powerful network                       
adversaries might also be able to observe network traffic between backends. Network                       
adversaries can use these observations to try to infer sensitive information about users:                         
whether they received a positive COVID-19 diagnosis, or whether they received a                       
notification of exposure to COVID-19 positive users. 

We consider two types of network adversaries: 

● Local network adversaries (e.g., a malicious WiFi hotspot). 

● Major network operator (e.g., large telecom operators that can see both cellular                       
and domestic internet traffic). 

When apps use Google/Apple Exposure Notification protocol (or the DP-3T protocols),                     
they need to communicate to the backend server, and potentially other servers, as                         
determined by the health authority. When this network traffic is associated with sensitive                         
information, it can reveal information to the adversary. Some examples of such sensitive                         
network traffic are : 1

● COVID-19 positive users’ smartphones upload diagnosis keys to the backend server                     
to enable proximity tracing.  

● Smartphones of COVID-19 positive users obtain an upload authorization code from                     
a health authority before uploading their keys to a backend server.  

● Smartphones of users that have been exposed communicate this to the backend                       
so that the backend can notify these exposed users (e.g., a system in which                           
instead of asking exposed users to call an information number, it is preferred that                           
a person calls those exposed users). 

● Smartphones of users that have received an exposure notification provide proof of                       
this notification to a server (e.g., to receive compensation or work leave). 

These interactions originate from different ​actions performed by a user or the app​.                         
Actions can involve several network connections. For example, the first two are likely both                           
caused by the action of ​uploading diagnosis keys​. The third results from an action                           
initiated by the app upon detecting exposure, and the last one corresponds to the action                             
of ​verifying notification.  

In this section, we propose a mechanism that provides users with ​plausible deniability                         
with respect to these network interactions — i.e., a user can claim that an interaction is a                                 

1 At the time of writing, there is no implementation of interoperability between countries in which                               
phones and/or backend servers exchange information. Depending on the implementation, some of                       
these exchanges may also reveal sensitive information and may require the introduction of new                           
mechanisms similar to those described in this document. 
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fake one generated automatically by the app. To achieve this, the main idea is to have all                                 
users regularly performing fake actions that, from the point of view of a network                           
adversary, look like real actions. When observing an action, the network adversary cannot                         
infer sensitive information about the user, as any action could be one automatically                         
generated by the system. 

Below, we provide guidelines for mechanisms that provide plausible deniability, including                     
how to create fake actions that are indistinguishable from real actions and how to                           
evaluate the strength of the protection. For each of these elements, we provide example                           
implementation of the techniques in the Swiss app SwissCovid. 

Creating fake actions indistinguishable from real actions 

This protection mechanism works by (1) producing fake actions that are indistinguishable                       
from real actions and (2) distributing these fake actions over time. As a result, any                             
observed action could, with reasonable probability, be a fake action. 

Making fake actions look the same as real ones 

Each action can cause multiple observable network events. For example, to perform the                         
action of uploading diagnosis keys​  a smartphone in the Swiss system will: 

1. Connect to the health authority backend to validate a Covidcode (a short                       
validation code provided to COVID-19 positive users) and obtain an authorization                     
token. 

2. Upload the diagnosis keys using the authorization token obtained in the previous                       
step to the app’s backend. 

In this example, network observers observe two separate network connections, one for                       
each backend. It will also observe the corresponding DNS queries. For each connection,                         
the observer can see the timing and sizes of network packets. 

Fake actions ​must be indistinguishable from real actions from the point of view of a                             
network adversary. This means that fake actions must: 

● Make network connections in the same order as real actions, and as a result of                             
this, make DNS queries in the same order as well. 

● Ensure that the packets sequences and sizes for each connection follow the same                         
distribution as in real actions.  

● Ensure that the packet content follows the same content distribution as in real                         
actions. In practice, this is most easily achieved by using an encrypted connection. 

● The timing of package sequences within each connection must follow the same                       
distribution as in real actions. In particular, the server response times must follow                         
the same distribution as for a corresponding real action. This condition is rarely                         
automatically satisfied. We recommend to either perform exactly the same                   
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operations for real and fake actions (including database accesses etc.); or to delay                         
responses up to a known maximum response time for real and fake requests. 

● If the action involves more than one connection, the timing patterns between                       
individual requests must follow the same distribution as in a real action. 

● Externally accessible information (e.g., published diagnosis keys) should not reveal                   
if a specific request was real or fake. 

To achieve these requirements, it might be necessary to modify real requests and how                           
they are handled, to make it easier to make fake requests indistinguishable from them. 

Satisfying all these requirements is not always possible. In particular, ensuring that the                         
timing patterns between different requests follow the same timing pattern is very hard                         
when ​the user’s actions influence the time between real requests. ​The time it takes for a                               
user to perform an action is difficult to model, and therefore difficult to reproduce in fake                               
requests. Therefore, we strongly recommend that users’ actions should not influence the                       
timing of sensitive requests. In the Swiss app for example, the user’s action of entering a                               
Covidcode happens ​before any network request is made, thereby ensuring that the time it                           
takes the user to enter this code does not influence the observations of the network                             
observer. 

The SwissCovid smartphone application applies these rules to ensure that fake uploads of                         
diagnosis keys are indistinguishable from real uploads: 

1. Requests to both backends use TLS encryption. 

2. For each fake upload action, the phone connects to the health authority backend,                         
sends a fake Covidcode and obtains a fake authorization token. 

3. The phone uploads fake diagnosis keys together with the fake authorization token                       
to the app’s backend. 

Both the health authority backend server and the app’s backend server have been                         
configured to use the same response delay for fake and real requests. In both cases, the                               
request and the response are the same sizes as in the corresponding real requests.                           
Finally, if any request when performing a fake action fails due to a backend not being                               
available, the phone repeats the request, as for a real action. 

The backend receiving the (real) diagnosis keys does ​not ​publish them immediately.                       
Instead, it only reveals received diagnosis keys every two hours. As a result, the                           
publication timing of keys cannot be used to distinguish real and fake requests. 
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Scheduling fake action 

We propose that Apps schedule fake actions following a Poisson distribution with Poisson                         
rate . This rate indicates the number of fake actions per day. We propose a default  λ                              2

value of 0.2, i.e., the app will generate on average 1 fake action every 5 days. This                                 
parameter choice provides good protection without overloading the server. We show                     
below that the protection provided is independent of the population size. 

The app makes a fake request as described above at the instant established by the                             
Poisson distribution. Real actions are made ​in addition to these fake actions in order not                             
to incur extra delays. ​In particular when uploading diagnosis keys, it is important to                           
upload these keys quickly so that exposed users are notified quickly. 

Apps will use the following mechanism to schedule and launch fake actions: 

1. Draw a random delay ​t_delay from Exp( ) (i.e., following an exponential            λ          
distribution). 

2. Schedule a fake action ​t_delay seconds after the last time a fake action was                           
scheduled. If this time is in the past (e.g., when the scheduler is activated later                             
than requested), this event is immediately executed (following step). 

3. Once the scheduler activates, the app performs the fake action as described                       
above. 

4. Repeat from 1. 

Analysis 

By construction, real actions and fake actions are indistinguishable when compared. We                       
now analyse whether a network observer can infer the existence of a real action when                             
observing a ​sequence of actions spread over time, by the same user. We make the                             
following ​assumptions about real and fake actions​: 

1. Real and fake actions are indistinguishable in isolation. 

2. Fake actions are scheduled and executed following the Poisson distribution. 

3. Real actions are rare. For the purpose of this analysis, we assume they occur at                             
most once in an observation interval (e.g., reporting of a COVID-positive case). 

4. The times at which real actions occur are distributed roughly uniformly. In                       
particular, this implies that users who are tested positive for COVID-19 are not all                           
notified at the same time (e.g., between 8:30 and 8:45 in the morning). 

2 ​The choice of the Poisson distribution is due to its memoryless properties that help                             
provide robust privacy guarantees without complexity. 
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The last assumption simplifies our analysis. We note, however, that as long as the                           
distribution over time of real actions is known or can be estimated, the parameters for                             
fake actions can be adjusted to provide sufficient cover. 

We also make ​assumptions on the knowledge of the adversary: 

1. We assume that the adversary knows the prior probability ​p​REAL of an action being                           
real, and that this probability is roughly uniform across the population. For                       
instance, the adversary knows the rate of infection and assumes everyone is                       
equally likely to be infected. This assumption implies that the adversary does not                         
use the fact that some people are more likely to perform a real action because                             
they are at high risk of contracting COVID-19. 
 

2. We assume that the adversary only has information related to internet                     
communication. In other words, the adversary does not collude with other entities                       
to gain access to other events such as telephone calls or SMS messages.  3

In the following, we make the worst-case assumption that the network observer can                         
associate observed network activity to a persistent (network) identity. 

It is always the network adversary’s goal to determine if a specific user has (ever)                             
performed a real action. In our analyses, we compute the posterior probability that a user                             
performed a real action given the adversary’s observation.  

Times between actions 

We show that a network adversary that uses the time between successive actions to                           
determine whether a user performed a real action cannot do any better than it already                             
could be determined based on the prior distribution. In other words, the network                         
observer does not learn any more about the user, despite being able to observe the time                               
between successive actions. 

Let ​p​REAL be the prior probability that an action is real, and ​p​FAKE = 1 - p​REAL ​be the                                     
corresponding prior probability that an action is fake. The prior probability that an action                           
is real is typically small. Let ​IAT be the random variable that indicates the interarrival time                               
between two actions. We use the Bayes’ theorem to compute the probability that an                           
observed action is real, given that the previous action happened ​T ​hours ago: 

P(ACTION is real | ​IAT​ < ​T​) = P(​IAT​ < ​T​ | ACTION is real) * ​p​REAL​ / P(​IAT​ < ​T​). 

We compute the probabilities on the right hand side as follows: 

● P( ​IAT < ​T | ACTION is real) = CDFExp(​T​, 𝝀 / 24), where CDFExp(​T​, 𝝀 / 24) gives the                                       
probability that the exponential delay sampled from a rate of 𝝀 / 24 is less than ​T                                 

3 We note that telecommunication providers that have access to data other than the internet                             
communication data (calls, SMS) may already be able to infer the status of individuals based on                               
these data (e.g., a user receiving a call from the test center) and therefore the App does not                                   
provide additional information to them. 
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hours, because the probability that at T hours before the receive time of a real                             
action, the user makes a fake action follows the exponential distribution. 

● P( ​IAT < ​T | ACTION is fake) = CDFExp(​T​, 𝝀 / 24), because fake actions are per                                   
definition scheduled following an exponential distribution. 

● P(​IAT < ​T​) = P( ​IAT < ​T | ACTION is real) * ​p​REAL ​+ P( ​IAT < ​T | ACTION is fake) * ​p​FAKE ​=                                                   
CDFExp(​T​, 𝝀 / 24), by applying the law of total probabilities and the above                           
identities. 

Plugging these in, we find that 

P(ACTION is real | ​IAT​ < ​T​) = ​p​REAL​, 

confirming that the time between actions does not give the adversary more information                         
about whether a real event occurred or not. 

Counting number of observed post requests 

We now analyse what the network adversary can learn from counting the total number of                             
actions within a time interval. We show that the total number of observed actions                           
influences the posterior probability that a specific user made a real action. Clearly, if the                             
network observer observes zero actions, the observer is now sure that the user did not                             
make a real action. Similarly, if the observer observes many actions, the probability that                           
one of these actions is real goes up somewhat. However, these posterior probabilities                         
remain small, showing that users retain plausible deniability. 

We assume the adversary counts events for a duration of ​D days. Let ​N ​be the random                                 
variable that indicates the number of actions observed for a specific user. Let ​p​REAL and                             
p​NOREAL be the probability that a user makes respectively does not make a real action. We                               
use Bayes’ theorem to compute the posterior probability that a user made a real action,                             
given an observation of ​N ​actions: 

P(did REAL | ​N​ ACTIONS) = P(​N​ ACTIONS | did REAL) * ​p​REAL ​/ P(​N​ ACTIONS) 

We compute the probabilities on the right hand side as follows: 

● P(​N ACTIONS | did REAL) = P(​N - 1 fake ACTIONS), because if one action is real, then                                   
the remaining ​N - 1 actions observed during these ​D days must be fake. Since fake                               
actions follow a Poisson distribution, we have that P(​N - 1 fake ACTIONS) =                           
(​D​𝝀)​N-1​*e​-​D​𝝀​/(​N-1​)!. 

● P(​N ACTIONS | no REAL) = P(​N fake ACTIONS) = (​D​𝝀)​N​*e​-​D​𝝀​/​N​!, because all actions                           
must be fake. 

● P(​N ACTIONS) = P(​N ACTIONS | did REAL) * ​p​REAL ​+ P(​N ACTIONS | no REAL) * ​p​NOREAL                                   
using the law of total probabilities. 

Plugging these numbers in and cancelling common terms, we find: 
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P(did REAL | ​N​ ACTIONS) = N * ​p​REAL ​/ (N * ​p​REAL​ ​+ ​D​𝝀 * ​p​NOREAL​) . 

When ​p​REAL​ ​is very small, then this equation is approximated by 

P(did REAL | ​N​ ACTIONS) = N/𝝀 * ​p​REAL​/D ​= N/𝝀 * ​p​DAY  ​, 

where ​p​DAY is the probability that a real action happens on a given day. Note that this                                 
equation only depends on ​p​DAY and not on the length of the interval considered. For small                               
values of ​N ​(these are by far the most likely), the posterior probability remains small as                               
well. Larger values of 𝝀, i.e., corresponding to generating more frequent fake actions,                         
reduce the posterior probability. However, a larger value of 𝝀 also means that bigger                           
values of ​N ​become more likely. As a result, doubling 𝝀 does not generally halve the                               
achievable posteriors. 

Example: uploading diagnosis keys 

As an example we plot the posterior probability for determining whether a user uploaded                           
diagnosis keys or not given a 10 day window, i.e., ​D ​= 10 (recall from the above that the                                     
length of the interval does not really matter). Assuming a diagnosis rate of 25 cases per                               
million inhabitants per day, we estimate ​p​REAL ​= ​0.00025 for the 10-day period. In the figure                               
below we plot P(did REAL | ​N ACTIONS) for realistic values of ​N. ​In fact, for 𝝀 = 0.2, we have                                         
expect that only one in 50 billion users will produce N = 16 fake actions at least once in a                                       
given 10 day period. 

The figure below shows that for all realistic values of ​N the posterior probabilities are                             
very small. In all cases, the probability is more than 99.8% that the observed user did ​not                                 
make a real action. This ensures that the actions of a user did make a real action are                                   
indeed plausible deniable. 

8 



 
Figure AA: Posterior probabilities of having made a real action given an observation of ​N 

actions for 𝝀 = 0.2 (on average one fake action per 5 days). The dotted line is the prior 
probability of having made a real action. 

 

 
Figure AB: As Figure AA, but with left 𝝀 = 0.0333 (on average one fake action per month) 

and right 𝝀 = 1 (on average one fake action per day). 
 
Decreasing the rate 𝝀 at which users make fake requests increases the overall posterior                           
probability for the same set of realistic values of ​N​, while increasing the rate 𝝀 decreases                               
the overall posterior probability. Finally, the posterior increases almost linear in the prior.                         
So if the real event is more likely, a larger value of the rate 𝝀 is needed to compensate. 

Discussion 

The base rate of real actions is extremely small for all the scenarios that might need                               
protection from network adversaries. Therefore, based on the base-rate fallacy, one                     
expects that any conclusions about users making real requests based on observations                       
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provide only weak evidence. The above analysis bears this out: the fake action                         
mechanism ensures plausible deniability of real actions. 

However, this analysis ​hinges on the fact that fake actions are made when scheduled​.                           
Network adversaries might obtain better estimates by exploiting scheduling deviations.                   
Some deviations might be unavoidable on mobile operating systems where the                     
background scheduler checks for scheduled events too infrequently or only at very                       
regular times. 
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Server-side logging 

For security and operational reasons, backend infrastructure is usually configured to log                       
information for each incoming request. This information includes for each incoming                     
request: the time, requested resource, and IP address. Furthermore, backend servers may                       
update databases to record information. Proximity tracing systems, for example, store                     
diagnosis keys of COVID-19 positive users. 

While these logs and database records are not necessarily collected at the same place,                           4

they are typically under the control of a single entity. Therefore, we recommend a careful                             
study of information stored by different components in the system to ensure that                         
sensitive data about users, e.g., whether they are COVID-19 positive or have been notified                           
of exposure, is protected at all times, even when these logs and database records are                             
combined. We consider a snapshot attacker that accesses the logs and database records                         
at discrete points in time, rather than continuously observing them. 

We distinguish two types of requests to the server: non-sensitive and sensitive requests.                         
In decentralized proximity tracing systems, all users regularly retrieve new diagnosis keys                       
and potentially new application configurations. These requests are ​non-sensitive​. All                   
users make these requests, and therefore logs of them cannot reveal any sensitive                         
information about users, beyond the fact that these users use a proximity tracing                         
application. 

To ensure that the existence of network requests is not correlated to users not having                             
received a positive diagnosis, the app should continue making requests after a                       
COVID-positive user uploads their keys. In particular, the app must continue downloading                       
diagnosis keys, and continue making fake requests. 

Requests made by users related to the uploading of diagnosis keys by COVID-19 positive                           
users and requests to confirm notification status of exposed users (see next sections) are                           
sensitive​. These requests should be treated with care. In the previous section, we                         
described how fake requests can hide sensitive information from network observers. Such                       
fake requests are also ​essential to ensure sensitive information cannot be inferred from                         
log files. ​For example, without fake requests, the simple fact that a user with a specific IP                                 
address made an upload request would reveal that this user is COVID-19 positive. 

The use of fake requests is by itself not sufficient. The stored data — logs and database                                 
records — should not enable fake requests to be distinguished from real requests. In                           
particular, this means that: 

● Request logs should ideally not contain more than a user’s IP address, the request                           
time, the requested resource, the request and response sizes, the HTTP status                       
code, and the User-Agent field. 
 

4 For example, backend infrastructure may consist of web-application firewalls, load balancers,                       
application servers and database servers. All of these can potentially generate and store log                           
entries. 
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● Request log entries should not reveal whether the request was fake or real.                         
Therefore, fake and real requests should produce identical distributions for all                     
fields in the logs. In particular, logs must not record responses or sensitive request                           
headers. 
 

● Backend applications should not output any logs that distinguish real from fake                       
requests. 
 

● When writing entries to the database, e.g., to store diagnosis keys of a COVID-19                           
positive user, these entries should either not have a timestamp, or only a                         
coarse-grained one. This requirement ensures that every entry in the database                     
may correspond to a large number of incoming requests, ensuring that the                       
anonymity set of an entry in the database is large. 

Finally, any requests not made by the app should be at most weakly correlated in time to                                 
real actions by app users. For example, health officials should not request an                         
authorization code seconds before a user uploads diagnosis keys. Without this restriction,                       
time correlation between a health official’s request and the user’s real request would                         
allow to establish a link between a key upload and an authorization request, revealing                           
that the diagnosis key upload is real. 

Analysing the SwissCovid dummy uploads 

All communication with the backend originating from the SwissCovid app and health                       
officials is TLS encrypted. 

The SwissCovid app regularly retrieves new configuration settings and batches of                     
diagnosis keys from the backend server. Since ​all apps retrieve this information, these                         
requests are non-sensitive. To help handle the load, these requests are served using a                           
content delivery network (CDN). Beyond the fact that the CDN can now ​identify users of                             
the SwissCovid app,​ this has no privacy implications. 

All sensitive requests are made directly to the Swiss backend infrastructure. These                       
requests never traverse a CDN. The sensitive requests are made to a different domain and                             
the corresponding TLS certificate is pinned in the app. The CDN does not have access to                               
this certificate and can therefore not intercept these requests. 

For each incoming request, the server only logs allowed data such as the request time,                             
the user agent, the requested resource, and the status code.  

The database only holds information of spent COVID codes, spent authentication codes                       
and tokens, and diagnosis keys corresponding to COVID-19 positive users. The records for                         
spent COVID codes do not contain any information on when they were spent. The records                             
on authorization codes only record the day on which they were spent. The diagnosis keys                             
do have a corresponding receive timestamp. However, this timestamp is rounded down,                       
so that it only records in which bucket the diagnosis key should be published. IIn the                               
current configuration, this ensures a 2-hour granularity. 
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Therefore, based on the logs and database records, every diagnosis key in the database,                           
could have been stored as a result of any upload request made in a 2-hour window. With                                 
fake requests, this ensures a large anonymity set. 

Finally, the Swiss backend application also logs requests by health officials to create                         
COVID codes. These codes are provided to COVID-19 positive users, and authenticate the                         
upload of diagnosis keys. COVID codes are provided to users either by phone or via postal                               
mail. As a result, there is always at least several minutes of delay between when a COVID                                 
code is obtained and when it is used by a user in an upload. This ensures an anonymity                                   
set of hundreds of people for the final upload. 
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Defense in depth: device and app attestation 

Modern smartphone operating systems enable backend servers to verify the integrity of                       
the smartphone operating system, as well as the integrity of a specific version of an                             
application. As part of this process, smartphones ​attest the integrity of the OS and an app                               
to the backend server operated by the app provider. Attestation can be used as a defense                               
in depth mechanism to restrict API access to official apps running on an unmodified                           
mobile operating system.  

Attestation can be used to increase the security of notification validation and to restrict                           
access to published diagnosis keys. We emphasize that attestation is not likely to                         
withstand all adversaries. A determined adversary may be able to find a way to bypass                             
the attestation check.  

Google SafetyNet Attestation API 

Google offers the SafetyNet Attestation API on Android. It is provided by Google Play                           
Services, and it is therefore not part of the open source distribution of Android​. The                             
SafetyNet Attestation API documentation states that “The API should be used as a part of                             
your abuse detection system to help determine whether your servers are interacting with                         
your genuine app running on a genuine Android device.”  5

At a high-level, the communication flow of SafetyNet is as follows. The server sends a                             
nonce to the app, which the app relays to the SafetyNet API. The SafetyNet service on the                                 
device verifies the device state, and requests a signed attestation from Google’s                       
Attestation API backend (via the internet). The signed attestation is passed back to the                           
app. The app can then send it to the server for verification. The server will verify the                                 
attestation against the nonce to convince itself that the smartphone has not been                         
modified, and that the app is the official app. 

Observations: 

● Standard API limit is 10.000 requests/day, but can be increased on request 

● Phone communicates actively with Google. Google’s documentation of the                 
protocol is not clear about what is being sent. We expect that at least some                             
device-specific data needs to be sent to ensure that not everyone can simply use                           
the Attestation API backend. 

● Requires/depends on Google Play Service which is ​not ​open source. As such, using                         
SafetyNet ​increases the dependency on non-transparent code​. 

5 ​https://developer.android.com/training/safetynet/attestation 
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● There exist documents that suggest that SafetyNet Attestation can be made to                       
succeed even on rooted phones.  6

iOS DeviceCheck 

Apple offers the DeviceCheck functionality on iOS devices. The documentation states that                       
“The DeviceCheck APIs also let you verify that the token you receive comes from an                             
authentic Apple device on which your app has been downloaded.”  7

At a high-level, the communication flow of DeviceCheck is as follows. Upon request of the                             
app, iOS generates an encrypted token for the device. The app sends this token to the                               
backend server. The backend server can validate the token by making an API call to Apple. 

Observations: 

● Presumably, if the device has been tampered with, the check will fail. The                         
documentation is not clear on this point. 

● Data from the phone is sent to Apple servers by using the app backend as an                               
intermediary. 

Comparison and discussion 

Both APIs depend on non-transparent and closed-source facilities offered by the mobile                       
operating system. Such closed-sourced dependencies are undesirable as they make it                     
harder or even impossible to verify the app in its entirety. 

While it is true that the Exposure Notification APIs also depend on non-open code, it is                               
possible to provide an open and verifiable version of these components, in particular on                           
Android.  

The dependency on Google Play Services also prevents a class of Android users from                           
using the app, even if otherwise they could. First, Google Play Services is not available on                               
more open Android phones and recent Huawei models. Second, it prevents                     
privacy-sensitive users from using custom firmware. 

Both attestation APIs generate recognizable network traffic that could be picked up by                         
network adversaries. In particular in the case of Android’s SafetyNet, a local network                         
adversary can detect the attestation call to Google. Therefore it is essential that the use                             
of attestation is not bound to specific sensitive events such as receiving a positive                           
diagnosis, or receiving an exposure notification. 

6http://mulliner.org/collin/publications/inside_safetynet_attestation_attacks_and_defense_mulli
ner2017_ekoparty.pdf although recent news suggest that these work arounds no longer function:                       
https://www.androidpolice.com/2020/03/11/safetynet-improvements-kill-magisk-hide/  

7https://developer.apple.com/documentation/devicecheck 

15 

http://mulliner.org/collin/publications/inside_safetynet_attestation_attacks_and_defense_mulliner2017_ekoparty.pdf
http://mulliner.org/collin/publications/inside_safetynet_attestation_attacks_and_defense_mulliner2017_ekoparty.pdf
https://www.androidpolice.com/2020/03/11/safetynet-improvements-kill-magisk-hide/
https://developer.apple.com/documentation/devicecheck


Encrypting batches of diagnosed keys 

The diagnosis keys uploaded by COVID-19 positive users are publicly accessible. An                       
operator may decide to increase the difficulty of executing some attacks against the                         
proximity tracing systems by restricting access to the diagnosis keys. Restricting access                       
makes identification attacks and tracing attacks against COVID-19 positive users harder.                     
We note, though, that identification attacks are an inherent risk in proximity tracing                         
systems.  Therefore, restricting access to diagnosis keys is of limited benefit. 8

Furthermore, we wish to emphasize that these attacks are actually very hard to execute                           
because the current rate of COVID-19 positive diagnoses is low. In countries that are                           
gradually loosening restrictions, the probability of being diagnosed in a given day is less                           
than 1 in 50.000. As a result, an attacker needs to monitor a large number of users to even                                     
see a single COVID-19 positive person. 

To further harden the system against attacks that use the diagnosis keys, we propose a                             
mechanism that uses app attestation to only provide diagnosis keys to official apps. This                           
approach, however, has all the disadvantages discussed above of attestation. A single                       
device on which attestation fails, enables an attacker to circumvent the protection. If the                           
attacker can read memory on one device for which attestation succeeds, the attacker can                           
also recover the diagnosis keys. 
 
Moreover, making keys available only inside official apps reduces transparency. With this                       
approach, neither the keys nor any auxiliary data that accompanies the keys can be                           
externally verified. Given these downsides and the limited benefits, we do not currently                         
recommend this approach. 

App attestation to restrict access to diagnosis keys 

The key idea of this mechanism is to publish encrypted diagnosis keys, so that attackers                             
cannot (easily) access the diagnosis keys to execute their attacks. The keys are encrypted                           
using a key that is regularly rotated. Legitimate apps can retrieve the new decryption key                             
after the app attestation is successful. 

Let ​D be the duration that a single key is valid, for example 7 days. For each period ​d of ​D                                         

days, the backend: 

1. Generates a random 128-bits AES key ​K ​
d 

8 See “Privacy and Security Risk Evaluation of Digital Proximity Tracing Systems”, the DP-3T team,                             
version April 21, 2020. Retrieved from           
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Secu
rity%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf 
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2. To release a batch during period ​d ​, the server encodes the batch and then                           
encrypts it using AES-GCM mode with ​K ​

d
as the key. The backend publishes the                           

ciphertext. 

Every D/2 days, smartphones retrieve decryption keys as follows: 

1. The phone runs the device attestation protocol (using Android’s SafetyNet or iOS’                       
DeviceCheck) with the backend server. 

2. If the check passes, the server sends to the smartphone the keys ​K ​
d

for all relevant                               
past periods (depending on how far in the past the app computes exposures) as                           
well as the next period. 

3. The device stores these keys securely, ideally within a special secure storage such                         
as Android’s KeyStore. 

Smartphones proceed to download batches and then use the appropriate key ​K ​
d

to                         
decrypt the batch with AES-GCM. Phones run the attestation protocol frequently enough                       
to always have the corresponding decryption keys. 

To reduce the load on the backend server and to enable the use of a CDN, we deliberately                                   
do ​not use attestation for each download​. When using attestation for every download, the                           
backend must process thousands of attestations per second, even for small countries.                       
This requires large amounts of costly infrastructure. It is also unclear whether for                         
example Google would allow attestations at this rate. 

Analysis 

As long as the keys ​K ​
d

are secure, no outside attacker can access the diagnosis keys. Thus                                 
this countermeasure raises the bar for identification and tracing attacks. 

However, the security of the keys has two weak spots. First, the security of the mechanism                               
hinges on the security of the attestation mechanism. As we described above, one device                           
or OS version combination on which attestation succeeds while it should not, give the                           
attacker access to the decryption key. If any such weak setup is present, not even using                               
attestation for each download offers any protection. 

The second weak spot is the fact that for efficiency, the decryption keys must be stored                               
on the device. Therefore, the security of the keys is only as strong as the security of the                                   
secure storage mechanism in the face of a determined attacker.   
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Validating the receipt of a notification by the app 

Users of the proximity tracing app receive a notification from the app when their                           
exposure to COVID-19 positive users is considered sufficiently high. Users might feel                       
incentivized to falsely claim they have been notified to ‘profit’ from the system. For                           
example, Switzerland has a policy of economically compensating people of their                     
quarantine is required by the health authorties, or a person may become exempt from an                             
undesired activity (e.g., an exam). 

We propose a technical mechanism that enables lightweight remote notification                   
verification to increase the difficulty of making a fake claim. As we explain below, this                             
mechanism can be circumvented by more advanced attackers. To reduce abuse, we                       
recommend that the use of this verification mechanism be combined with legal measures                         
that penalize circumvention. 

The proposed mechanism aims to verify that the reporting user has a phone that received                             
a notification. This mechanism satisfies the following requirements: 

1. The mechanism should not require changes to the proximity tracing protocol used                       
by Google and Apple. 

2. The mechanism should not require changes to the Google/Apple Exposure                   
Notification API. 

3. The app should not need additional permissions (e.g., access to the device’s                       
location or phone number). 

4. The mechanism can be used during a single phone conversation with a call center                           
operator. 

5. The mechanism does not introduce additional privacy risks for users. The verifier                       
should not learn any information that is not epidemiologically relevant, such as                       
which COVID-19 positive users contributed to the user’s exposure. 

Limits of validation mechanisms 

We deliberately do not require that this mechanism verifies that the phone that received                           
the notification ​belongs to the user that claims to have been notified. For example, we do                               
not check if a parent makes a false claim based on a notification on one of their                                 
childrens’ smartphones. 

It is likely possible to (weakly) bind a user’s device to a user identity and then use this                                   
during the verification process. However, we expect that such a mechanism requires the                         
app to request the user to enter personal data manually on first install (e.g., name, date                               
of birth, or phone number). We feel this approach is undesirable, as it gives the                             
perception that the app gathers (and uses) private data, and may introduce data                         
protection compliance requirements for the app. 
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The above requirements preclude strong cryptographic protection. First, the only                   
information that is exchanged in the Google/Apple EN protocol during a contact event are                           
the EphIDs. The Google/Apple EN protocol (as well as the DP3T low-cost protocol)                         
publishes information from which the EphIDs of COVID-19 positive users can be derived.                         
Therefore, there is ​no secret information that is available only to users that were in actual                               
physical proximity to a COVID-19 positive user. Users that were not in physical proximity                           
will also receive these EphIDs when the COVID-19 positive keys are published. 

Second, the Google/Apple Exposure Notification API precludes any access to received                     
EphIDs for privacy reasons. So validation mechanisms cannot access matching EphIDs,                     
and thus cannot exploit the fact that genuinely notified users receive EphIDs ​before they                           
are published. 

If modifications to the protocol and API were allowed, cryptographically strong                     
mechanisms would likely be possible. However, we wish to emphasize that these should                         
retain the privacy properties of the original protocol. For example, the mechanism should                         
not reveal edges in the social graph, and thus not reveal ​which​ EphID matched. 

Furthermore, any “proofs” generated by such a mechanism should be small enough to be                           
transferred over a low-bandwidth channel such as a phone call. If the proofs are instead                             
transferred via the internet, the mechanism should take care to provide a dummy traffic                           
mechanism to hide notified-status from network adversaries. 

A simple validation mechanism 

We present a simple remote validation mechanism. This mechanism can be used during a                           
phone conversation with a hotline operator. The mechanism has been designed to be                         
easy to use by both users and hotline operators. 

We make the following assumptions: 

a. When the user is notified by the app that their exposure is above the threshold,                             
the app informs the user of the ​date on which the exposure exceeded the                           
threshold. 

b. Users inform hotline operators of this ​date. 

This assumption is compatible with our requirements. One, the Google/Apple Exposure                     
Notification API returns this date. Two, communicating this date to the hotline is essential                           
for medical reasons. The exposure date is used to determine how long the user should                             
self-quarantine. 

We propose the following mechanism: 

1. Before the user calls the hotline, the app prominently displays to the user the                           
exposure date ​T ​

e ​ and a 6-digit confirmation code, which the device computes as: 

code = TRUNCATE( HKDF( tweak, T ​
e ​ || T ​now ​ ) ) 
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where ​HKDF uses ​SHA256 ​, ​TRUNCATE reduces the 256 bits output to a 6-digit                         
response code, the tweak ​tweak is a value that is only known to the app and                               
operators. The value ​T ​

e
is the exposure date encoded as the start of the                           

corresponding UNIX Epoch day in milliseconds since UNIX epoch and ​T ​
now

is the                         
current timestamp when generating the verification code encoded as milliseconds                   
since UNIX epoch and rounded down to a 5-minute multiple. 
 
The app should recommend that the user writes these values down before calling                         
the hotline. 

2. When calling the hotline, the user informs the operator of their exposure date ​T ​
e

                           
and the confirmation code code. The operator enters ​T ​

e ​ and ​code ​ into the system. 

3. The operator’s system computes the confirmation codes for the last half hour and                         
compares them against the supplied code. The system signals the operator if the                         
code is not correct. (Comparing against the last few codes lets the system validate                           
older codes.) 

This mechanism satisfies our requirements. It does not require modification to the EN                         
protocols or APIs, does not require extra permissions, works during a single phone call,                           
and does not reduce the privacy of users. 
 
The tweak ​tweak can either be encoded into the app, or retrieved from the backend                             
server after successful attestation and then stored in secure storage. However, we                       
recommend making the value of ​tweak public to ensure verifiability, i.e., that the system                           
uses the same value for all users. 

Analysis of the mechanism 

As long as the ​tweak value is secret, users only have a small probability of producing the                                 
correct validation code ​code. For example, when using 6 digit responses and a half-hour                           
window, this probability is 6 in a million. 

It is difficult to unconditionally protect the value ​tweak from tech-savvy users that might                           
decompile the application or circumvent the attestation check. Only providing the                     
(recent) value ​tweak to apps after successful attestation, does make it harder for                         
tech-savvy users to obtain it. Considering the challenges with attestation described                     9

above, we do not, at this time, recommend its use. 

After obtaining the value ​tweak ​, tech-savvy users can compute correct responses despite                       
not having been notified. 

9 We deliberately do not advocate for performing an attestation ​during the verification process                           
with the hotline. While a “live” attestation further raises the bar, the attestations are too large to                                 
transmit via the phone, and therefore induce yet another network side-channel that must be                           
protected against network adversaries. 
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By themselves, we expect that ordinary users are not able to compute the correct                           
response, even if they would know the correct value of ​tweak ​. However, tech-savvy users                           
could set up a validation-service in the form of a website or an app that performs the                                 
necessary computation on behalf of the ordinary user. 

An offline version 

Alternatively, it is possible to use an offline version of the above protocol where the                             
validation codes are ​not verified during the conversation. This has the advantage that the                           
hotline system does not need to know the value ​tweak and does not need to have a                                 
system in place to compute verification codes. 

Instead, the hotline stores the exposure date ​T ​
e ​, the time of the call ​T ​

now ​, and the                               
validation code ​code ​ so that they can be verified at a later time. 

Recommendations 

The verification mechanism raises the bar somewhat against ordinary users making false                       
claims. However, it is only a small part in a more complex system needed to validate                               
notifications. In particular, we recommend to only deploy it in combination with                       
additional mechanisms to reduce abuse: 

1. Use legal measures to penalize fake notification reports. 

2. Monitor the availability of services and apps that generate codes. 

3. Monitor the number of notifications and compare against predictions based on the                       
number of positive diagnoses.  
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