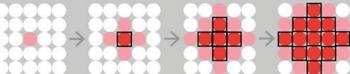
DP3T Distributed privacypreserving contact tracing

April 13th, 2020

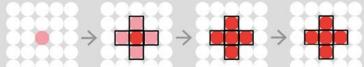
- Since the DP3T protocol is evolving quickly, please always check with authors for the latest materials, checking the date on the title page.
- The most recent information on the project and contacts are available at https://github.com/DP-3T/documents

How can contact tracing help?

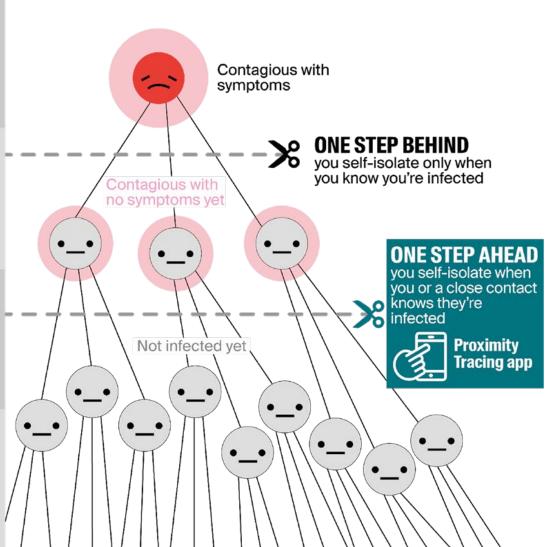
As far as COVID-19 cares, there are 3 kinds of people:



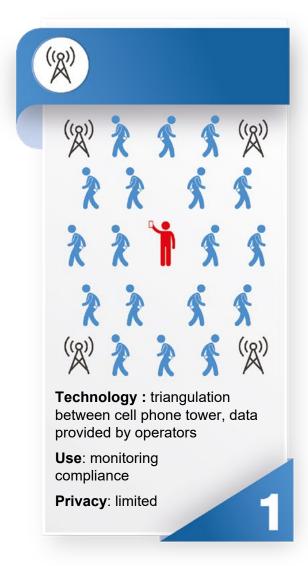
If we do nothing


We get a wave of infections

If someone finds out they're infected, they immediately self-isolate:

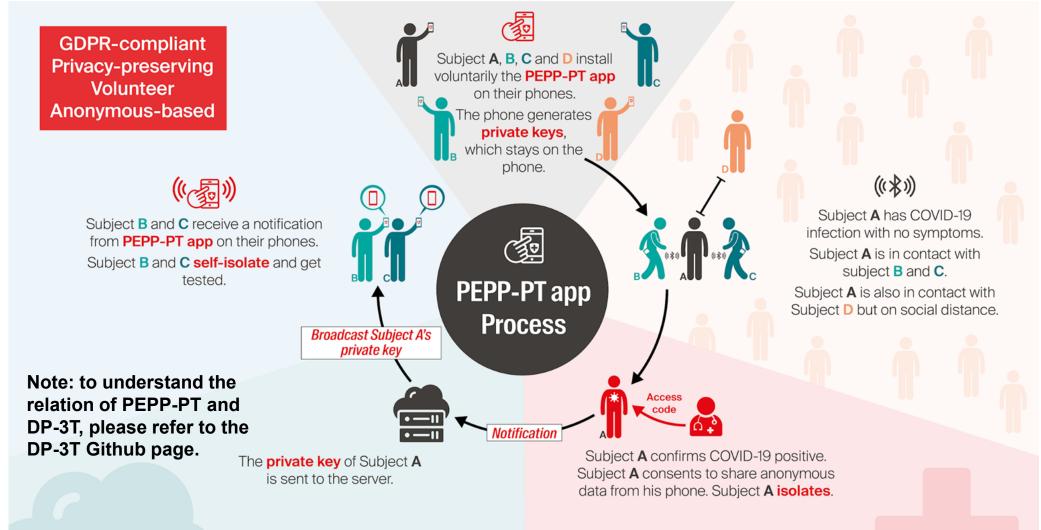


We are one step behind the virus

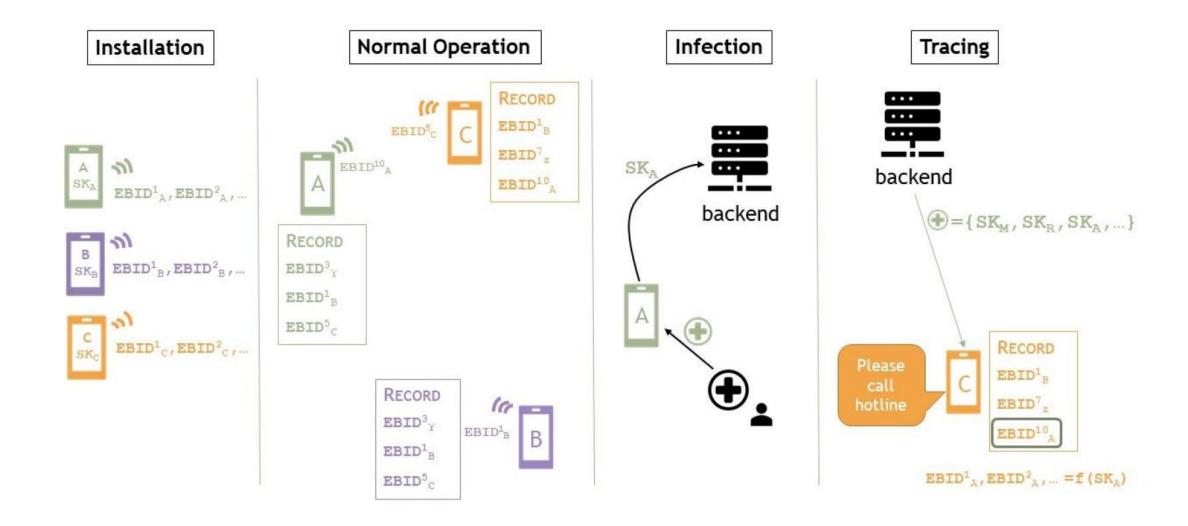

If someone finds out they're infected, they and their close contacts self-isolate

We are one step ahead

Three scenarios for contact tracing


Goals to be solved by the application

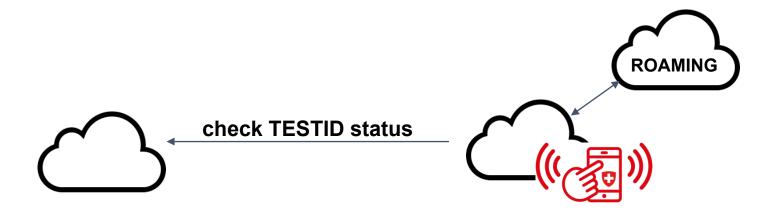
- 1) People are quickly informed that they may have been in contact with a person infected with SARS-CoV-2.
- 2) After contact, the person receive instructions on which further actions to take (this part is country-specific).
- 3) Epidemiologists receive anonymous or pseudonymous research information about the spread of SARS-CoV-2 from volunteering users.


Security and privacy goals

- 1) The system can not be used to track healthy individuals.
- The data processing has been minimized, but goals are still reached.
- 3) Data abuse is avoided using technical measures.
- The system scales to countries with millions to hundreds of millions of people.
- The system is compatible with as the most common mobile phones.
- 6) Joining the system is voluntary.

DP-3T is distributed, privacy-preserving

Bluetooth + ephemeral identifiers


Comparison of distributed vs centralized

	Decentralized	Centralized
Interaction graph	-	Backend / State-Level
Proximity graph	Epidemiologist	Epidemiologist / Backend / State-Level
Location tracking: infected users	Tech-savvy user (during infection)	Backend /State-Level (always)
Location tracking: non-infected users	-	Backend / State-Level (always)
At-risk individuals	Tech-savvy user / Eavesdropper	Evesdropper / Backend / State-Level
Infected individuals	Tech-savvy user / Eavesdropper	Tech-savvy user / Eavesdropper
Percentage infected individuals	Tech-savvy external with antenna	State-Level

Comparison of specific risks

	Decentralized	Centralized
Fake contact events	Physical proximity + amplified broadcast	Infected tech-savvy user / Backend / State-Level
Suppressing at-risk contacts	Tech-savvy user (own contacts only)	Tech-savvy user / Backend / State-Level
Prevent contact discovery	Tech-savvy user + broadcast	Tech-savvy user / Backend / State-Level

The backend has two main components

Health System IT infrastructure (see assumptions)

Case management

Medically-regulated environment (may have its own mobile health app)

DP3T Infrastructure

Anonymous

Not medically regulated

Pan-European exchanges for roaming purposes

Providing data to epidemiologists

- During application setup, the user can opt in to sharing data with epidemiologists.
- If the user opts in:
 - Every day, a dummy packet of data is sent to avoid detecting infection through traffic analysis.
 - On the day of infection, should that come, the user gets to confirm whether to share data or not.
 - If yes, data is shared with the designated agency in pseudonymous form, allowing for a construction of the infection graph.

DP3T team (list is updated constantly)

- **EPFL**: Prof. Carmela Troncoso, Prof. Mathias Payer, Prof. Jean-Pierre Hubaux, Prof. Marcel Salathé, Prof. James Larus, Prof. Edouard Bugnion, Dr. Wouter Lueks, Theresa Stadler, Dr. Apostolos Pyrgelis, Dr. Daniele Antonioli, Ludovic Barman, Sylvain Chatel
- ETH Zürich: Prof. Kenneth Paterson, Prof. Srdjan Capkun, Prof. David Basin, Dr. Dennis Jackson, Dr. Jan Beutel
- KU Leuven: Prof. Bart Preneel, Prof. Nigel Smart, Dr. Dave Singelée, Dr. Aysajan Abidin
- TU Delft: Prof. Seda Guerses
- University College London: Dr. Michael Veale
- CISPA: Prof. Cas Cremers
- University of Oxford: Dr. Reuben Binns
- University of Torino / ISI Foundation: Prof. Ciro Cattuto

Contact: dp3t@groupes.epfl.ch