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1 Abstract
This document contains an epidemiological description of the transmission risk level used in the German
Corona-Warn-App (CWA). As its name suggests, the transmission risk is an essential part when estimating
the overall risk of a person to get infected in an exposure incident. Usage of the transmission risk level is
specified in the ExposureNotification API and in the CWA Architecture. In particular we use epidemiological
information about COVID-19 from the literature to motivate the choice of levels for this parameter. To
enhance transparency and reproducibility of the computations, we provide the mathematical derivations and
the computations in one Rmarkdown document. The methods sketched below are likely to be subject to
change, once additional information about the characteristics of COVID-19 is obtained or as feedback from
the use of the app arrives.

2 Introduction
We are interested in the situation where a person A (potential infector) at time 𝑡0 uploads information about
being a laboratory confirmed SARS-CoV-2 case. The upload happens in terms of A’s diagnosis keys (see
Apple and Google 2020b). Each diagnosis key is associated with a particular day in A’s history (past 14
days) and also has an optional transmission risk level from I–VIII (see Apple and Google 2020a).
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Users can periodically download diagnosis keys from the diagnosis server. For each app user B (potential
infectee), who downloads the list of valid diagnosis keys and discovers he or she has been in contact with A,
a risk assessment will be made.1 This risk assessment is operationalized by the total risk score, of which one
component is the transmission risk level 𝜆𝐴 computed by A. The transmission risk level (provided by A)
and its associated transmission risk value (set by B) are app-defined and should be based on the probability
of transmission between the two persons being in close contact. In the present document we interpret this
probability as a function of epidemiological information about A and the time of contact. Information about
the closeness and the duration of the contact are not considered part of the transmission risk component,
because they are handled separately in the computation of the total risk score. For more information on how
to calculate the total risk score see the Exposure Notification API.

As the transmission risk level is computed on A’s device, additional information about A such as being
symptomatic or not, date of onset of symptoms, date of sampling or date of test result could be used to
estimate the infectiousness of A more precisely. We will use the currently known characteristics of COVID-
19, especially its infectiousness profile due to viral shedding and the operational delays of its handling to
estimate the infectiousness at certain times. We can obtain the information on how many days ago from
now (i.e. 𝑡0) the contact between A and B was: Let 𝑡𝐶 be the time of contact between A and B, then the
contact was 𝑑 = 𝑡0 − 𝑡𝐶 days ago. The aim of this document is thus to parametrize the time-dependent
infectiousness of A as a function of 𝑑.

The better we can assess the probability of a transmission from A to B, the more accurate is the combined
risk score that is used to warn the user to take further action, e.g., to contact a local health authority. Having
digital support for this type of contact tracing appears helpful in order to obtain a more complete coverage
of contact tracing and to do this much quicker.

The present document is structured as follows. In section Scenarios we distinguish between four possible
information states about A at the time of upload2 depending on whether an onset of COVID-19 symptoms
has occurred or not and whether this information can be used or not. We calculate a transmission risk for
each of the four cases. However, since the initial version of the app will not allow a distinction between
cases 1–4, and since the transmission risk level is only one of 4 components for the total risk score, we thus
normalize the transmission risk level in a so called base case, which will be used by the initial version of the
app. A section Discussion summarizes the results and points out important limitations.

3 Scenarios and Events
Since the API allows for a customization of the transmission component 𝜆𝐴 in the above, we shall study it
in more detail here. Particular interest will be in four information scenarios about A, the potential infector,
at the time of the upload.

For an infected person the following sequence of event times occurs (but not necessarily in the given order):

• 𝑇𝐸 = 𝑇infection: transmission of SARS-CoV-2 to an exposed person A from some unknown source
• 𝑇𝐼 = 𝑇infectious: start of the infectious period in person A, i.e. A is able to infect others
• 𝑇𝑆 = 𝑇symptoms: onset of symptoms in person A (also referred to as DSO, day of symptom onset)
• 𝑇𝑃 = 𝑇sampling: time of sampling of person A [dt. Probenentnahme]
• 𝑇𝑅 = 𝑇result: time of A obtaining the positive test result
• 𝑇𝑈 = 𝑇upload: time where person A uploads the positive test result to the system

Note that before observation these times are to be considered as random quantities and, hence, are denoted
by an uppercase letter. Once observed, a lower case letter shall be used.

1Throughout we will assume that the contact between A and B was such that A infected B. At this point we explicitly ignore
the possibility that B actually infected A.

2Due to technical restrictions, the upload of the diagnosis keys may not be a single-point-in-time event, but may happen
over two consecutive days, without further interaction with the user after his or her initial consent. Given that the time point
of the user’s consent for upload may also be the last opportunity for providing additional information such as date of onset of
symptoms, we use “consent for upload” when calculating delays and refer to it as simply “upload” throughout this document.
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Furthermore, note that for SARS-CoV-2 it is likely that 𝑇𝐼 occurs before 𝑇𝑆, but it cannot be ruled out that
the order is reversed. For asymptomatic cases 𝑇𝑆 will never occur, but 𝑇𝐼 might already have occurred or
will occur in the future. For pre-symptomatic cases 𝑇𝑆 lies in the future, i.e. 𝑇𝑆 > 𝑡0, but 𝑇𝐼 might already
have occurred or lie in the future. From our above description we would usually have 𝑇upload = 𝑡0. In a
later section we will study the delays between the different event times. For this we will have to use the
convolution of random variables to get the distribution of their sum.

To derive the transmission component 𝜆𝐴 we will distinguish persons who will eventually develop symptoms
and those which are completely asymptomatic. The former set will be denoted 𝒮𝑦𝑚𝑝 and the later 𝒜𝑠𝑦𝑚𝑝.
Throughout the text we will use the shorthand notation 𝒜𝑠𝑦𝑚𝑝𝐴 to denote the event that person A belongs
to the set of completely asymptomatic. Likewise for 𝒮𝑦𝑚𝑝𝐴. We reserve the notion of asymptomatic for
those persons who never develop symptoms, whereas pre-symptomatic at a particular time 𝑡 are those who
will eventually develop symptoms, but at a later point in time than 𝑡. If 𝑇 𝐴

𝑆 denotes the time of symptom
onset in A, we will use the shorthand notation 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑡) to denote the event that A belongs to the set
of individuals who will eventually develop symptoms, but the onset of these symptoms has not yet occurred
by time 𝑡, i.e.

𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑡) = {𝜔 ∈ 𝒮𝑦𝑚𝑝𝐴 | 𝜔 ∶ 𝑇 𝐴

𝑆 > 𝑡}.
Likewise we define the event 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 ≤ 𝑡). Both asymptomatic and pre-symptomatic are characterized
as being non-symptomatic at a given time of reference 𝑡. We will use the following shorthand to denote this
event:

𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑡) = 𝒜𝑠𝑦𝑚𝑝𝐴 ∪ 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑡),
which is just a formal way of saying that in order for A to be non-symptomatic at time t, A either belongs
to the set of completely asymptomatic cases or A is pre-symptomatic at time 𝑡. Then we have (under the
assumption that A is infected)

1 = 𝑃 (𝒮𝑦𝑚𝑝𝐴) + 𝑃(𝒜𝑠𝑦𝑚𝑝𝐴)
= 𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 ≤ 𝑡) + 𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑡)) + 𝑃(𝒜𝑠𝑦𝑚𝑝𝐴)

= 𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 ≤ 𝑡)) + 𝑃(𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑡))

The four information scenarios about A are then:

1. symptomatic and day of symptom onset 𝑡𝐴
𝑆 ≤ 𝑡0 known at time 𝑡0, i.e. the event 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 = 𝑡𝐴
𝑆 ),

2. symptomatic but unknown day of symptom onset at time 𝑡0, i.e. the event 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 ≤ 𝑡0),

3. non-symptomatic at time 𝑡0, i.e. the event 𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑡0),

4. no knowledge of symptom status at time 𝑡0 (the base case), i.e. the event Ω = 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 ≤ 𝑡0) ∪

𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑡0).

Differentiation of these scenarios requires person A to provide additional (optional) information on potential
symptom onset and respective date. The 2nd scenario occurs, if A accepts to reveal that COVID-19 relevant
symptoms have been observed by the time of upload, but A does not want to reveal (or does not know) the
day of symptom onset. If A despite a positive test result either has not yet developed or never will develop
any symptoms, then we would be in scenario 3. If A does not provide any additional information, this would
lead to scenario 4.

3.1 Infectiousness Profile due to Viral Shedding
Infectiousness of COVID-19, i.e. how much infectious material is being shed, varies as a function of time
since infection, the development of symptoms and (if available) the DSO, see for example He et al. (2020).
Assuming the amount of virus shed by a symptomatic case A is described by the function 𝑣𝐴(𝑑), where
𝑑 is the days since DSO in A. We expect the function to be positive even for negative 𝑑 values, due to
pre-symptomatic transmission. Note that the scale of 𝑣𝐴(𝑑) is in principle arbitrary for our purposes as we
are interested in the amount of virus shedding compared to the potential maximum value which informs the
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eventual classification into the risk levels I to VIII. Note also that symptomatic cases with unknown date of
onset and completely asymptomatic cases are not handled by the function 𝑣𝐴(𝑑). These will be addressed
later in this section.

The study by He et al. (2020) examines the temporal dynamics of viral shedding and infectiousness of
symptomatic COVID-19 cases. They provide results informing on the transmission risk for contacts of
symptomatic cases.

Based on 77 identified transmission pairs He et al. (2020) inferred the infector’s infectiousness profile with
respect to symptom onset by fitting a left-shifted gamma-distribution to the empirical frequency of observed
transmissions occurring at 𝑑 days before or after symptom onset of the infector. The left-shifting of the
gamma-distribution allows for potential pre-symptomatic transmission. The resulting infectious profile is
shown in Fig. 1c (middle) in He et al. (2020), suggesting that infectiousness starts at 3 days prior to DSO
and ends 8 days after DSO, with peak infectiousness at one day before DSO.

Thus, for the profile function 𝑣𝐴(𝑑) we implement a discretized version of the infectiousness profile as inferred
by He et al. (2020). The discretized profile for each day 𝑑 computes the mean infectiousness within [𝑑, 𝑑 +1),
for instance the value 𝑣𝐴(−2) refers to the mean infectiousness within the interval [−2, −1) days, i.e. with
respect to time of symptom onset. The profile 𝑣𝐴(𝑑) is normalized such that the maximum infectiousness
by day equals one, which occurs at 𝑑 = −1.

## -3 -2 -1 0 1 2 3 4 5 6 7 8 9
## 0.015 0.185 0.237 0.197 0.139 0.091 0.057 0.034 0.020 0.011 0.006 0.004 0.002
## 10 11 12
## 0.001 0.001 0.000
d_infprofile <- c(

"-3" = 0.015, "-2" = 0.185, "-1" = 0.237, "0" = 0.197, "1" = 0.139,
"2" = 0.091, "3" = 0.057, "4" = 0.034, "5" = 0.02, "6" = 0.011,
"7" = 0.006, "8" = 0.004, "9" = 0.002, "10" = 0.001, "11" = 0.001,
"12" = 0

)
d_infprofile <- d_infprofile / max(d_infprofile)

ggplot_pmf(d_infprofile) +
xlab("Time relative to symptom onset (Days) of infector") +
ylab("relative infectiousness") +
coord_cartesian(ylim = c(0, 1))
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Figure 1: Assumed infectiousness profile.

It should be noted that the inferred infectious profile by He et al. (2020) has some bias, since the infectiousness
profile represents the conditional probability density of the time point of transmission relative to the infector’s

4



date of symptom onset, given that a transmission from A to B occurs. Thus, for transmission pairs with
frequent contacts within a wide exposure window, this observed time of transmission merely represents the
time of ‘first successful transmission’. However, this eliminates the possibility for further transmissions (to
be observed) between these persons, although the actual infectiousness of the infector might persist (and
even further increase) after the observed transmission. The infectiousness was estimated to have completely
vanished by 8 days after symptom onset, which might be just a consequence of this bias.

An indicator for this bias is the amount of virus shedding as a function of time since onset of symptoms,
which is also provided within He et al. (2020). Virus shedding very likely corresponds well to the actual
infectiousness of a symptomatic person and it was found that viral load only gradually decays until the
end of the testing window (21 days after symptom onset), which suggests that infectiousness persists even
beyond 8 days after symptom onset as inferred through the transmission pairs. However, a study by Wölfel
et al. (2020) suggests, that persistent viral shedding beyond 8 days after symptom onset does not yield
viable viruses that could be amplified in cell culture, and Arons et al. (2020) observed in a ‘Skilled Nursing
Facility’ setting, that viable viruses were recovered more often in the days prior to symptom onset than in
the subsequent days. Thus, the exact connection between the amount of shedding and the corresponding
risk of transmitting the virus is still unclear.

Still, a more realistic infectiousness profile could be informed by also accounting for the duration of virus
shedding, resulting in a longer duration of persisting infectiousness. Combining both of these data sources
from He et al. (2020) with available and future data on virus viability in cell culture within a holistic
statistical framework might yield such an adjusted infectiousness profile curve, which should be utilized in a
future adoption of the transmission risk calculation.

3.2 Operational Delays
The time period between sampling until test result, i.e. 𝑇result − 𝑇sampling, is given by
d_samp2res <- c("0" = 0.1, "1" = 0.7, "2" = 0.2)

The time period between the test result and the upload, i.e. 𝑇upload − 𝑇result, is given by
d_res2upload <- c("0" = 0.7, "1" = 0.25, "2" = 0.05)

Note that the chosen probabilities in these two distributions are no more than educated expert guesses. They
have to be adjusted based on real data once the system is running.

3.2.1 Sampling to Upload

The convolution of the time from (sampling to getting the result) and (getting the result to uploading) leads
to the following distribution for the time between sampling and upload:
(d_samp2upload <- convolute(d_samp2res, d_res2upload))

## 0 1 2 3 4
## 0.070 0.515 0.320 0.085 0.010
ggplot_pmf(d_samp2upload) + xlab("Duration Sampling until Upload (Days)")
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Figure 2: PMF of the duration between sampling and upload.

3.2.2 Symptoms to Upload for Symptomatic

To compute the delay between onset of symptoms and and upload we need a distribution for the time between
symptom onset and time of sampling. Note that for this distribution we assume that the infected person
gets tested because of the developed symptoms and thus this delay cannot be negative. For the alternative
scenario, in which a person gets tested for other reasons, the onset of symptom might occur after taking a
sample. This case is treated further below.

We assume 𝑇sampling − 𝑇symptoms for symptomatic individuals is a discrete distribution with the following
PMF:
d_symp2samp <- c("0" = 0.1, "1" = 0.6, "2" = 0.2, "3" = 0.1)

This leads to the convoluted time from DSO to upload displayed as follows:
(d_symp2upload <- convolute(d_symp2samp, d_samp2upload))

## 0 1 2 3 4 5 6 7
## 0.0070 0.0935 0.3550 0.3105 0.1675 0.0550 0.0105 0.0010
ggplot_pmf(d_symp2upload) + xlab("Duration Symptom Onset until Upload (Days)")
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Figure 3: PMF of the duration between DSO and upload.

3.2.3 Upload to Symptoms for Pre-Syptomatic

Here, we cover the scenario in which people get tested independent of having developed any symptoms
beforehand and in case of a positive test result, upload their diagnosis keys. This could, e.g., be the case
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for individuals which are tested as part of contact tracing, because they were identified as a contact at risk
after having had contact with an infected person. For these cases the time from symptom onset to upload
may be in fact negative, since symptoms might begin after receiving the test result and upload. Note that
we here condition on DSO actually occurring, which is not the case for truly asymptomatic cases.

To compute the delay distribution for this case we define the delay distribution from sampling to DSO for
cases which were tested within their pre-symptomatic phase and will develop symptoms afterwards. Since a
PCR-test result is most likely to be positive in a phase of considerable viral shedding, we assume that only
tests within the pre-symptomatic phase will come out positive, which means that only tests from samples
taken within the 3 days prior to DSO will be positive. Thus, as we have no further information when
suspected cases get tested during their pre-symptomatic stage, we assume that it takes between 1 and 3
days from sampling to symptom onset, each with probability 1/3. In other words, the sampling occurs 1 to
3 days prior to DSO for pre-symptomatically tested. Thus the time from DSO to sampling is negative. We
denote the distribution of this delay by d_symp2samp_presymptomatic.
(d_symp2samp_presymptomatic <- convolute(
c("0" = 1 / 3, "1" = 1 / 3, "2" = 1 / 3), c("-3" = 1)))

## -3 -2 -1
## 0.3333333 0.3333333 0.3333333

By convoluting the (negative) time delay from symptom onset to sampling d_symp2samp_presymptomatic
with the delay from sampling to upload d_samp2upload we obtain the overall time delay from upload to
symptom onset, denoted by d_upload2symp. Note that this delay may be negative or positive, since some
cases, although tested in a pre-symptomatic stage, might have already developed symptoms at the time of
upload.
d_upload2symp <- convolute(d_symp2samp_presymptomatic, d_samp2upload)
ggplot_pmf(d_upload2symp) + xlab("DSO relative to upload date (Days)")
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Figure 4: PMF of the duration between DSO and upload.

3.3 Raw Transmission Risk
Assume that we know that A got a positive test result, which is uploaded to the server on day 𝑡0. All contacts
that occurred 𝑑 = 𝑡0 − 𝑡𝐶 days ago will be assigned the same transmission risk level 𝜆𝐴(𝑑), containing
information on the infectiousness of a generic contact of A on that day. The infectiousness and therefore also
the risk level 𝜆𝐴(𝑑) might depend on further information provided by A, in particular whether A developed
symptoms by the time of upload and in that case the day of symptom onset 𝑇 𝐴

𝑆 = 𝑡𝐴
𝑆 , which would imply

that 𝑡𝐴
𝑆 ≤ 𝑡0.

The transmission risk level 𝜆𝐴(𝑑) is derived in two steps: 1. First, we compute the raw relative infectiousness
(also referred to as transmission risk) 𝜆(𝑟𝑎𝑤)

𝐴 (𝑑) of A given the provided information, which serves as a
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continuous infectiousness value on the scale [0, 1]. For this step we distinguish between the four possible
scenarios of available information introduced in section Scenarios and Events. 2. In a second step, this raw
value is translated into a transmission risk level 𝜆𝐴(𝑑) which takes values from 1 to 8 and which will be further
used within the total risk score calculation. This classification will be explained in section Transmission Risk
Levels.

3.3.1 Case 1: Availability of 𝑡𝐴
𝑆

If the time of symptom onset is available, i.e. in the event 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 = 𝑡𝐴

𝑆 ), then at time 𝑡0, the onset of
symptoms in the primary case A happened 𝑡0 − 𝑡𝐴

𝑆 ≥ 0 days ago. So the relative infectiousness of case A
relative to 𝑡0 is just 𝑣𝐴(−𝑑) shifted 𝑡0 − 𝑡𝐴

𝑆 days to the right, i.e 𝑣𝐴(−𝑑 + (𝑡0 − 𝑡𝐴
𝑆 )) = 𝑣𝐴(𝑡𝐶 − 𝑡𝐴

𝑆 ).
# Infectious profile relative to t0
d_infprofile_t0 <- function(t0_minus_tS) {

res <- d_infprofile
names(res) <- as.numeric(names(res)) - t0_minus_tS
res

}

plot_it <- function(t0_minus_tS, xlim) {
d_infprofile_t0_diff1 <- d_infprofile_t0(t0_minus_tS = t0_minus_tS)
ggplot_pmf(d_infprofile_t0_diff1) +
xlab(expression("Time of exposure of secondary case relative to "

* t[0] * " and " * t[S]^A *
" in primary case known (Days)")) +

ylab("relative infectiousness") +
ggtitle(substitute(t[0] - t[S]^A == a, list(a = t0_minus_tS))) +
xlim(xlim)

}
gridExtra::grid.arrange(plot_it(1, xlim = c(-5, 10)), plot_it(2, xlim = c(-5, 10)))
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Figure 5: Plot of the infectiousness profile, if symptom onsets happened 1 (top) or 2 (bottom) days ago from
upload.

Hence, for a given DSO 𝑡𝐴
𝑆 we define the raw transmission risk

𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 = 𝑡𝐴
𝑆 )) = 𝑣𝑎(−𝑑 + 𝑡0 − 𝑡𝐴

𝑆 ),
where 𝑑 = 𝑡0 − 𝑡𝐶 refers to the duration in days between the time of contact and the time of upload.
Again, here we only provide the raw value 𝜆(𝑟𝑎𝑤)

𝐴 , i.e. the relative infectiousness on a [0, 1]-scale. These raw
infectiousness values as a function of DSO and time since contact are shown below.
# Maximum number of days since exposure to display
max_dse <- 13

M_case1 <- matrix(
0,
nrow = 22,
ncol = max_dse + 1,
dimnames = list(days_since_symptoms = 0:21, days_since_contact = 0:max_dse)

)
for (i in 0:21) {

inf_profile <- d_infprofile_t0(t0_minus_tS = i)
days <- as.numeric(names(inf_profile))
days_since_contact <- days * (-1)
# Only pick events in the past since you condition on the two having met
reasonable_days <- (days <= 0) & (days_since_contact <= max_dse)
days_since_contact <- days_since_contact[reasonable_days]
M_case1[i + 1, days_since_contact + 1] <- inf_profile[reasonable_days]

}
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Figure 6: Raw transmission risk for Case 1: A is symptomatic with DSO provided.

3.3.2 Case 2: Symptomatic, but no Availability of 𝑡𝐴
𝑆 , only Day of Upload

Here we consider the case, in which we know that A is symptomatic at time of upload, but do not know the
exact DSO, i.e. the event 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 ≤ 𝑡0). In this case, we can infer a probability distribution for the DSO
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𝑇 𝐴
𝑆 from our knowledge about the duration between DSO and upload given by d_symp2upload and knowing

the date of upload 𝑡0. We therefore define the raw transmission risk as the conditional expectation of 𝜆(𝑟𝑎𝑤)
𝐴

given that A was symptomatic somewhere before 𝑡0. We obtain this expectation by marginalizing over the
possible DSO 𝑇 𝐴

𝑆 , i.e.

𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 ≤ 𝑡0)) = 𝔼𝑇 𝐴
𝑆

[𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 = 𝑡𝐴
𝑆 )) ∣ 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 ≤ 𝑡0)]

=
𝑡0

∑
𝑡𝐴

𝑆 =𝑡0−13
𝜆(𝑟𝑎𝑤)

𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 = 𝑡𝐴

𝑆 )) ⋅ 𝑑symp2upload(𝑡0 − 𝑡𝐴
𝑆 )

M_case2 <- numeric(max_dse + 1)
for (days_since_contact in 0:max_dse) {

case1_val <- M_case1[as.numeric(names(d_symp2upload)) + 1, days_since_contact + 1]
M_case2[days_since_contact + 1] <- sum(case1_val * d_symp2upload)

}

# Convert result to matrix for better comparison
M_case2 <- matrix(

M_case2,
ncol = max_dse + 1,
nrow = 1,
dimnames = list("no info about DSO at upload", days_since_contact = 0:max_dse)

)

# Convert to data.frame
df_M_case2 <- matrix_to_df(M_case2)

# Show the scale
plot_rel_infectiousness(df_M_case2)
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Figure 7: Raw transmission risk for Case 2: A is symptomatic with unknown DSO.

Due to marginalization, the resulting raw transmission value (as a function of 𝑑 = 𝑡0 − 𝑡𝐶) is flatter and
wider compared to a raw transmission value curve for a known date of symptom onset 𝑡𝐴

𝑆 (see case 1). In
particular, the maximum raw infectiousness value is reached at 0.81 compared to 1 in the case of a known
DSO. This difference shows the additional gain in risk assessment within the case of knowing the DSO.

Note that for intermediate scenarios in which some additional information, like the date of sampling, is pro-
vided by A, one can compute the raw transmission value similarly by marginalizing out the date of symptom
onset with respect to the corresponding delay distribution. This again could yield a more informative value
compared to relying on the upload date alone.
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3.3.3 Case 3: Completely Asymptomatic or Pre-Symptomatic

For this case we consider the scenario in which A at the time of upload provides the information that there
was no onset of symptoms so far, i.e. the event 𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑡0). This case implies the two mutually
exclusive situations:

i. 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑡0), i.e. A will develop symptoms at a later time point 𝑇 𝐴

𝑆 > 𝑡0 and is currently in a
pre-symptomatic stage

ii. 𝒜𝑠𝑦𝑚𝑝𝐴, i.e. A will not develop any symptoms at all

At the time of upload we will not know which of these two situations applies. For the purpose of computing
a transmission risk for case 3 we thus require the probabilities for each of the two scenarios (and for the
pre-symptomatic scenario for each sub-scenario 𝑇 𝐴

𝑆 = 𝑡0 + 𝑛, for 𝑛 ≥ 1) which will then be appropriately
weighted together. Thus, let

𝑤𝑛 = 𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 = 𝑡0 + 𝑛) | 𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑡0))

denote the probabilities for the different sub-cases of the pre-symptomatic scenario, i.e. 𝑤𝑛 is the conditional
probability for the event that A develops symptoms 𝑛 days after the upload date, where 𝑛 ∈ {1, … , 𝑁} with
𝑁 being some plausible maximum time delay between upload date and DSO. Analogously, we define

𝑤asymptomatic = 𝑃(𝒜𝑠𝑦𝑚𝑝𝐴 | 𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑡0))

which denotes the probability for the completely asymptomatic scenario. Thus, for the pre-symptomatic
situation, i.e. 1 ≤ 𝑛 ≤ 𝑁 , we obtain

𝑤𝑛 = 𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 = 𝑡0 + 𝑛) ∣ 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑡0) ∪ 𝒜𝑠𝑦𝑚𝑝𝐴)

=
𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 = 𝑡0 + 𝑛) ∩ (𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑡0) ∪ 𝒜𝑠𝑦𝑚𝑝𝐴))

𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑡0) ∪ 𝒜𝑠𝑦𝑚𝑝𝐴)

=
𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 = 𝑡0 + 𝑛))
𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑡0)) + 𝑃(𝒜𝑠𝑦𝑚𝑝𝐴)

=
𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 = 𝑡0 + 𝑛) ∣ 𝒮𝑦𝑚𝑝𝐴)𝑃(𝒮𝑦𝑚𝑝𝐴)

𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑡0) ∣ 𝒮𝑦𝑚𝑝𝐴)𝑃(𝒮𝑦𝑚𝑝𝐴) + 𝑃(𝒜𝑠𝑦𝑚𝑝𝐴)

In order to compute 𝑤𝑛 we thus require the probability that symptom onset occurs 𝑛 days after the upload
date given that onset of symptoms will happen, i.e. 𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 = 𝑡0 +𝑛) |𝒮𝑦𝑚𝑝𝐴). This is covered by the
delay distribution d_upload2symp introduced further above. Furthermore we need the probability for any
infected person to develop symptoms at all, i.e. 𝑃(𝒮𝑦𝑚𝑝𝐴). This probability was in Mizumoto et al. (2020)
estimated to be ̂𝑃 (𝒮𝑦𝑚𝑝𝐴) = 0.86. For 𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑡0) | 𝒮𝑦𝑚𝑝𝐴) we rely on the random time from data
upload to symptom onset for suspected cases, who were tested in a pre-symptomatic stage.

Since according to d_upload2symp the maximum delay between upload and DSO is three days we set 𝑁 = 3.
By plugging in the individual numbers we can compute the scenario probabilities 𝑤𝑛 for 𝑛 ∈ {1, 2, 3}. For
instance, for 𝑤1 we obtain

𝑤1 = 0.1383 ⋅ 0.86
(0.1383 + 0.0317 + 0.0033) ⋅ 0.86 + 0.14 = 0.412

The overall results for 𝑤𝑛, 𝑛 = 1, 2, 3, are given below:
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w_n <- (d_upload2symp[c("1", "2", "3")] * p_symp) /
(sum(d_upload2symp[c("1", "2", "3")]) * p_symp + (1 - p_symp))

data.frame(n = 1:3, w_n = w_n)

## n w_n
## 1 1 0.411554428
## 2 2 0.094211255
## 3 3 0.009916974

Similarly, we obtain

𝑤asymptomatic = 𝑃(𝒜𝑠𝑦𝑚𝑝𝐴 ∣ 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑡0) ∪ 𝒜𝑠𝑦𝑚𝑝𝐴)

= 𝑃(𝒜𝑠𝑦𝑚𝑝𝐴)
𝑃(𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑡0) ∣ 𝒮𝑦𝑚𝑝𝐴)𝑃(𝒮𝑦𝑚𝑝𝐴) + 𝑃(𝒜𝑠𝑦𝑚𝑝𝐴)

= 0.14
(0.1383 + 0.0317 + 0.0033) ⋅ 0.86 + 0.14 = 0.484

3.3.3.1 Computation of the Transmission Risk Knowing the probabilities of the possible scenarios
and sub-scenarios in the case of a person being non-symptomatic at the time of uploading a positive test
result, we can compute the transmission risk for case 3 by applying the law of total probability, i.e.

𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑡0))
= 𝔼[𝜆(𝑟𝑎𝑤)

𝐴 (𝑑, ⋅) ∣ 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑡0) ∪ 𝒜𝑠𝑦𝑚𝑝𝐴]

= 𝑤asymptomatic ⋅ 𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒜𝑠𝑦𝑚𝑝𝐴) +

3
∑
𝑛=1

𝑤𝑛 ⋅ 𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 = 𝑡0 + 𝑛))

Thus, the first term shows that we require the transmission risk function for completely asymptomatic people.
Here we assume, that completely asymptomatic cases have the same infectiousness profile (as a function
around the date of upload) like symptomatic people, but with their infectiousness reduced by a factor of 0.4
(see Mizumoto et al. 2020). However, note that in this case we cannot rely on the computations from case
2 (symptomatic with unknown DSO), since here the DSO does not follow the distribution d_symp2upload,
which applies for people who were known to be symptomatic at the time of upload. For this case we
instead focus on people who were tested in an non-symptomatic stage, such that the DSO (for people who
develop symptoms) is distributed according to d_upload2symp subject to the upload date 𝑡0. Utilizing the
transmission risk from case 1 with known DSO, this yields

𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒜𝑠𝑦𝑚𝑝𝐴)

= 0.4 ⋅ 𝔼𝑇 𝐴
𝑆

[𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 = 𝑡𝐴
𝑆 )) ∣ 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑇 𝐴
sampling), 𝒮𝑦𝑚𝑝𝐴]

= 0.4 ⋅
𝑡0+3
∑

𝑡𝐴
𝑆 =𝑡0−3

𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 = 𝑡𝐴
𝑆 )) ⋅ 𝑑upload2symp(𝑡𝐴

𝑆 −𝑡0)

In code:
### add days_since_symptoms from -3 to -1 to M_case1
M_case1_extended <- rbind(
matrix(0,

ncol = ncol(M_case1),
nrow = 3,
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dimnames = modifyList(dimnames(M_case1), list(days_since_symptoms = seq(-3, -1)))
),
M_case1

)

# Go backwards from delay 0 to -3 and shift \lambda_A by one to the left
for (rn in 3:1) {

M_case1_extended[rn, ] <- c(M_case1_extended[rn + 1, -1], 0)
}

### case pre-symptomatic
M_case3_presymtomatic <- w_n %*% M_case1_extended[c("-1", "-2", "-3"), ]

### case non-symptomatic
M_case3_nonsymptomatic <- matrix(0,

ncol = ncol(M_case1), nrow = 1,
dimnames = modifyList(dimnames(M_case1), list(days_since_symptoms = NA_character_))

)

for (d in names(d_upload2symp)) {
M_case3_nonsymptomatic <- M_case3_nonsymptomatic +

(factor_asymp_reduce_infectiousness * M_case1_extended[d, ] * d_upload2symp[d])
}

### combined case
M_case3 <- M_case3_presymtomatic + w_asymptomatic * M_case3_nonsymptomatic

# Convert to data.frame
df_M_case3 <- matrix_to_df(M_case3)

# Show the scale
plot_rel_infectiousness(df_M_case3)
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Figure 8: Raw transmission risk for Case 3: A is non-symptomatic at day of upload.

If person A has not developed any symptoms up to the day of upload, the transmission risk is highest at the
day of upload itself, and gradually decays for each day that a risk contact lays further in the past.

3.3.4 Case 4: Unknown Symptom Status

The final case represents the scenario in which no further information is available beyond the fact that person
A uploaded a positive test results at time 𝑡0. This case covers several possible scenarios from above and
summarizes them into a condensed transmission risk.
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We decompose the case into the following possible mutually exclusive scenarios and apply corresponding
probabilities for each subscenario:

(i) 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 ≤ 𝑇 𝐴

sampling), i.e. person A got tested because they developed COVID-19 related symptoms,
(ii) 𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑇 𝐴
sampling), i.e. person A got tested as a suspected case, e.g. because of a risk contact,

and was non-symptomatic at the time of sampling. This can be decomposed into:
(a) 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑇 𝐴
sampling), i.e. person A develops symptoms after being tested,

(b) 𝒜𝑠𝑦𝑚𝑝𝐴 ∩ 𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑇 𝐴

sampling), i.e. person A is a completely asymptomatic case and will
thus never develop symptoms.

In summary we get the following disjoint decomposition:

Ω = 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 ≤ 𝑇 𝐴

sampling) ∪ 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑇 𝐴

sampling) ∪ (𝒜𝑠𝑦𝑚𝑝𝐴 ∩ 𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑇 𝐴

sampling)).

The transmission risk as a function of time difference 𝑑 between day of upload and day of contact for each
of these scenarios can be derived based on results and considerations from the above cases 1 to 3.

For (i) we can apply the risk value function from case 2 (symptomatic with unknown DSO), i.e.

𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 ≤ 𝑇 𝐴
sampling)) = 𝜆(𝑟𝑎𝑤)

𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 ≤ 𝑡0)).

For (ii.a) we can rely on the same considerations as made for case 3 (non-symptomatic at time of upload).
Again, note that for the here reflected scenario we assume that person A was pre-symptomatic at time of
testing. For considering the potential DSOs, we therefore again rely on the delay distribution between upload
and DSO used for pre-symptomatically tested people, i.e. d_upload2symp. Thus, we compute the expected
risk value by marginalizing over the DSO which follows d_upload2symp subject to the given date of upload
𝑡0, i.e.

𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑇 𝐴
sampling))

= 𝔼𝑇 𝐴
𝑆

[𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 = 𝑡𝐴
𝑆 )) ∣ 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑇 𝐴
sampling)]

=
𝑡0+3
∑

𝑡𝐴
𝑆 =𝑡0−3

𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 = 𝑡𝐴
𝑆 )) ⋅ 𝑑upload2symp(𝑡𝐴

𝑆 −𝑡0)

For (ii.b) we follow the same arguments as in case 3 for completely asymptomatic cases, which effectively
yields 𝜆(𝑟𝑎𝑤)

𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴
𝑆 > 𝑇 𝐴

sampling)) times a factor for the reduced relative infectiousness, i.e.

𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒜𝑠𝑦𝑚𝑝𝐴 ∩ 𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑇 𝐴
sampling))

= 𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒜𝑠𝑦𝑚𝑝𝐴)

= 0.4 ⋅ 𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑇 𝐴
sampling))

To define the overall transmission risk for case 4, we require probabilities for how likely each of the distinct
scenarios is to occur. In order to weigh scenarios (ii.a) and (ii.b) we again rely on the probability that a
proportion of 86% of infected cases develop symptoms (Mizumoto et al. (2020)). This leaves the question on
what proportion of cases, who upload their positive test result, were already tested while being asymptomatic.
For now, we can only assume that this proportion is rather low, at 𝑝suspect = 0.2. However, the proportion
𝑝suspect is likely subject to change over time, in particular due to the impact of the Corona-Warn-App itself,
as it has the primary purpose of identifying potentially infected people and initiate corresponding tests in
an early stage of their course of infection. Altogether, this leads to the transmission risk for case 4 being
defined as follows.
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𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, Ω)

= (1 − 𝑝suspect) ⋅ 𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 ≤ 𝑇 𝐴
sampling)) +

𝑝suspect ⋅ 0.86 ⋅ 𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒮𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑇 𝐴
sampling)) +

𝑝suspect ⋅ (1 − 0.86) ⋅ 𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, 𝒜𝑠𝑦𝑚𝑝𝐴 ∩ 𝒩𝑠𝑦𝑚𝑝𝐴(𝑇 𝐴

𝑆 > 𝑇 𝐴
sampling))

This leads to the following transmission risks.
### combined case
M_case4 <- (1 - p_suspect) * M_case2 +

p_suspect * p_symp * (1 / factor_asymp_reduce_infectiousness) * M_case3_nonsymptomatic +
p_suspect * (1 - p_symp) * M_case3_nonsymptomatic

# Convert result to matrix for better comparison
M_case4 <- matrix(M_case4,

ncol = max_dse + 1,
nrow = 1,
dimnames = list("no information at upload", days_since_contact = 0:max_dse)

)

# Convert to data.frame
df_M_case4 <- matrix_to_df(M_case4)

# Show the scale
plot_rel_infectiousness(df_M_case4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Delay from Exposure to Consent for Upload

0.00 0.25 0.50 0.75 1.00
Relative Infectiousness

Figure 9: Raw transmission risk for Case 4: no information about A at upload.

Note that case 4 represents the baseline case that is applied if the app does not or cannot collect any additional
information about person A, which will apply at least for the initial public version of the Corona-Warn-App.

3.4 Transmission Risk Level
The final step for generating the transmission risk level is to translate the raw transmission risk from the
continuous scale [0, 1] into a discrete scale (categories from I to VIII in roman numbers).

To do so, we set equidistant thresholds within the [0, 1]-scale, such that the scale is decomposed into 8
equal-sized intervals. A raw transmission risk 𝜆(𝑟𝑎𝑤)

𝐴 (𝑑, ⋅) within such an interval is then mapped onto the
respective level 𝜆𝐴(𝑑, ⋅), where the ⋅ stands for one of the four case scenarios, i.e.

𝜆𝐴(𝑑, ⋅) = 𝑙 ⇔ 𝑙 − 1
8 ≤ 𝜆(𝑟𝑎𝑤)

𝐴 (𝑑, ⋅) < 𝑙
8 ,

where 𝑙 ∈ {1, … , 8}. Note: we define that raw values with 𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, ⋅) = 1 are also classified as transmission

risk level VIII.
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3.4.1 Transmission Risk Levels for Cases 1–4

This classification rule leads to the following risk levels for the raw risks obtained from each of the above
considered case scenarios.
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Figure 10: Transmission risk level for Case 1: A is symptomatic with DSO provided.
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Figure 11: Transmission risk level for Case 2: A is symptomatic but with unknown DSO.
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Figure 12: Transmission risk level for Case 3: A is non-symptomatic at day of upload.
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Figure 13: Transmission risk level for Case 4: no information about A at upload.

3.4.2 Transmission Risk Levels for the Base Case

The initial version of the Corona-Warn-App does not offer the possibility to provide additional information
on symptom status when uploading a positive test result. Thus, the transmission risk is always calculated
as in case 4, where no further information is available, i.e. the event Ω.

For the risk level calculation, the transmission risks are classified into levels based on the highest achievable
value from case 1, in which the DSO is known. This leads to the highest possible transmission risk level
in case 4 being at VI. However, since no additional information is provided for the initial version of the
app, this case does never actually apply. Due to averaging over all possible scenarios in case 4, selecting the
transmission level from case 4 in the above calculations implies that the transmission risk level has an upper
level of VI. Therefore the app does not make use of the full level scale for the transmission risk, in particular
levels VII and VIII are effectively never used. This could mean that the transmission risk weights less in the
subsequent total risk score computations.

To address this issue we re-adjust the level classification by accounting for the maximum possible transmission
risk achieved within case 4. For this purpose we will also refer to case 4 as the base case since it represents
the only possible case within the initial app version. Thus we obtain

𝜆𝐴(𝑑) = 𝜆𝐴(𝑑, Base case) = 𝑙 ⇔ 𝑙 − 1
8 ≤ 𝜆(𝑟𝑎𝑤)

𝐴 (𝑑, Ω)
max𝑑∈{0…,13} 𝜆(𝑟𝑎𝑤)

𝐴 (𝑑, Ω)
< 𝑙

8 ,

where 𝑙 ∈ {1, … , 8} and where again raw values with 𝜆(𝑟𝑎𝑤)
𝐴 (𝑑, Ω) = max𝑑∈{0…,13} 𝜆(𝑟𝑎𝑤)

𝐴 (𝑑, Ω) are also
classified as level 8. This leads to the following risk levels for this single base case:

V VI VIII VIII VIII V III I I I I I I I

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Delay from Exposure to Consent for Upload

Figure 14: Transmission risk level for the Base Case.
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These are the transmission risk levels to be used for the initial app version. Once the app offers the possibility
to provide additional information, which then enables the cases 1 to 3, we advise to fall back to the case-
specific risk levels 𝜆𝐴(𝑑, ⋅) as defined above (and maybe adjust alarm thresholds within the app accordingly).

4 Discussion
The present document reflects an epidemiological motivation of the transmission risk level used as part of
the Corona-Warn-App. In particular we show how to inform this parameter by epidemiological information
about COVID-19 and the processes leading to a confirmed diagnosis in order to identify periods of increased
infectiousness. A stochastic framework was used to characterize the sequence of events. However, any
such stochastic model is subject to assumptions and parameter choices, which need to be carefully evaluated.
Given the present state of information about COVID-19 and the current simultaneous demands on resources,
such an extensive evaluation and sensitivity analysis was not possible. As a consequence the present document
reflects our best knowledge at the time of publication, but we strongly urge that relevant areas are identified
for further evaluation. In particular this could consist in quantifying some of the operational delays from
real-world data, once the app is in use.

With regards to some of the other parameters, a special challenge lies in the decentralized structure of the
app. This was a non-negotiable design decision in the run-up of developing the app. However, in order to
improve the app, epidemiological studies with a sample of voluntary users could be designed, in order to
evaluate the appropriateness of not just the transmission risk level, but the overall classificational approach
of the app.

One component to evaluate continuously should be the infectiousness profile utilized in this model. Our
current estimate inspired by He et al. (2020) contains several time- and context-specific quantities such
as the contact structure and the resulting serial interval. As an example, the serial interval is a time-
dependent quantity of an outbreak, e.g., because susceptible persons are depleted (Svensson (2007)), or
because increased contact tracing efforts, reduce the period of infectiousness. Finally, the introduction and
increased and successful use of the app may alter the very parameters that we estimated for its calibration.

Altogether, it would be important to continuously evaluate and update the infectiousness profile, e.g., by
being better able to connect information about viral shedding with the risk of infection. Another important
limitation is that throughout the document we assumed that A infected B. However, the likelihood and the
consequences that it was B who infected A should be further investigated - this seems particularly important
in a setting with many asymptomatic or pre-symptomatic transmissions.

One important point of this document is, that a better transmission risk assessment would be possible, if
information about day of symptom onset of the person uploading his or her diagnosis keys would be available.
The specific gain, for example in terms of sensitivity and specificity, is currently not provided, but could be
quantified using simulation.

However, besides the epidemiological aspect two other aspects are important: Firstly, using additional
information about A and mapping that to levels from I-VIII can be a privacy risk, because a potential
attacker could reveal some information about A from level and time of upload. In the specific case, if
provided, the DSO of A can probably be inferred in some situations. Secondly, the information about DSO
will be self-reported. In our computations we assume DSO to be reported correctly, but misreports are likely
to occur, which could also lead to serious bias in the transmission risk level A malicious user can also falsely
report his or her DSO to cause false alarms. Hence, one has to carefully balance these two aspects, e.g., by
evaluating different formats of DSO specification in the App. For a thoroughly discussion of potential risk
of a proximity tracing app see Privacy and Security Attacks on Digital Proximity Tracing Systems.

The epidemiological motivated transmission risk level has value in contact tracing beyond the App. Close
work together with local health authorities and those actually performing the contact tracing in the field is,
however, necessary to make this added-value more specific.
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4.1 Quality Assurance
The calculations in the present document reflect one of two implementations, which were made as part of a
two-mindset approach for quality assurance of the transmission risk level computations.

4.2 Acknowledgements
We thank Eric H. Y. Lau for his quick and friendly response to some additional questions regarding underlying
data of the He et al. (2020) publication.

5 Appendix
5.1 Convolution of Discrete Random Variables
In what follows we will use the fact that for two independent integer random variables 𝑋 and 𝑌 with PMFs
𝑓𝑋 and 𝑓𝑌 , respectively, we will have for their sum 𝑍 = 𝑋 + 𝑌 that

𝑓𝑍(𝑧) = ∑
𝑥

𝑓𝑋(𝑥)𝑓𝑌 (𝑧 − 𝑥).

This can be handled in R using the following function, where we assume that the PMF is formulated as
a vector where the elements denote the individual probabilities and the names of the vector contain the
support of the distribution.
#' Function to convolute two discrete probability distributions with
#' support on 0, 1, ... I.e. we compute the PMF of Z = X + Y.
#'
#' @param fX - the PMF of X given as a named vector, where the names
#' represent the support X_min, ..., 0, 1, ..., X_max
#' @param fY - the PMF of Y given as a named vector, where the names
#' represent the support Y_min, ..., 0, 1, ..., Y_max
#'
#' @return A names vector containing the PMF of Z = X+Y.
#'
#' @examples
#' convolute(
#' c(`-2` = .2, `-1` = .3, `0` = .2, `1` = .1, `2` = .1),
#' c(`-1` = .2,`0` = .3, `1` = .2, `2` = .2, `3` = 0.1)
#' )
convolute <- function(fX, fY) {

fZ <- rep(0, 1 + (length(fX) - 1) + (length(fY) - 1))
names(fZ) <- as.character(seq(
min(as.numeric(names(fX))) + min(as.numeric(names(fY))),
max(as.numeric(names(fX))) + max(as.numeric(names(fY)))

))

for (i in names(fX)) {
for (k in names(fY)) {

j <- as.numeric(i) + as.numeric(k)
fZ[as.character(j)] <- fZ[as.character(j)] + fX[i] * fY[k]

}
}

fZ
}
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5.2 Helper Functions for Discrete PMFs and Plots

#' Helper function to convert a names vector containing a PMF to a data.frame
#'
#' @param pmf - the PMF of X given as a named vector, where the names
#' represent the support X_min, ..., 0, 1, ..., X_max
#'
#' @return A data frame containing the PMF with columns for name (x) and value (pmf).
#'
#' @examples
#' pmf2df(c("-1" = 0.2, "0" = 0.3, "1" = 0.4, "2" = 0.1))
pmf2df <- function(pmf) {
data.frame(x = as.numeric(names(pmf)), pmf = pmf)

}

#' Helper function to draw a PMF
#'
#' @examples
#' ggplot_pmf(c("-1" = 0.2, "0" = 0.3, "1" = 0.4, "2" = 0.1))
ggplot_pmf <- function(pmf) {
ggplot(pmf2df(pmf), aes(x = x, ymin = 0, ymax = pmf)) +
geom_linerange() +
ylab("PMF")

}

#' Helper function to plot the risk levels
plot_risk_levels <- function(data, title = "",

breaks_y = NULL, ylab_text = "",
show_roman = TRUE,
fill_limits = c(1, 8),
fill_name = NULL) {

ggplot(data, aes(x = y, y = x)) +
geom_tile(aes(fill = M)) +
geom_text(aes(label = as.character(M_roman)), size = 2.5) +
xlab("Delay from Exposure to Consent for Upload") +
ylab(ylab_text) +
#labs(title = title) +
scale_fill_distiller(

palette = "PiYG", limits = fill_limits
) +
scale_y_continuous(breaks = breaks_y) +
scale_x_continuous(breaks = 0:max_dse) +
theme_minimal() +
coord_fixed(expand = FALSE) +
guides(fill = FALSE)

}

#' Helper function to plot the relative infectiousness
plot_rel_infectiousness <- function(data, breaks_y = NULL, ylab_text = "") {
ggplot(data, aes(x = y, y = x)) +
geom_tile(aes(fill = M)) +
xlab("Delay from Exposure to Consent for Upload") +
ylab(ylab_text) +
scale_fill_distiller(
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name = "Relative Infectiousness",
palette = "PiYG", limits = c(0, 1)

) +
scale_y_continuous(breaks = breaks_y) +
scale_x_continuous(breaks = 0:max_dse) +
theme_minimal() +
coord_fixed(expand = FALSE) +
theme(legend.position = "bottom")

}

5.3 Discretization of the Values in a Matrix

#' Take the values in the matrix mat and divide it into 8 equidistant levels
#' The result is returned as a df in long format with rows and cols variables
discretize_matrix <- function(mat, max_value = max(mat, na.rm=TRUE)) {

cuts <- cut(
mat,
breaks = seq(0, max_value, length = 9),
right = FALSE,
include.lowest = TRUE

)
mat <- matrix(
as.numeric(cuts),
nrow = nrow(mat),
ncol = ncol(mat),
byrow = FALSE

)
data.frame(

x = as.vector(row(mat) - 1),
y = as.vector(col(mat) - 1),
M = as.vector(mat),
M_roman = as.character(as.roman(as.vector(mat))),
stringsAsFactors = TRUE

)
}
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