1
0
mirror of https://github.com/corona-warn-app/cwa-documentation synced 2025-01-04 11:01:53 +01:00

Update solution_architecture.md

This commit is contained in:
Sabine Loss 2020-06-04 21:17:40 +02:00 committed by GitHub
parent 24e5271547
commit 2311d17d5c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -34,7 +34,7 @@ To reduce the spread of [COVID-19](https://www.ecdc.europa.eu/en/covid-19-pandem
![Figure 1: High-level architecture overview](images/solution_architecture/figure_1.svg "Figure 1: High-level architecture overview") ![Figure 1: High-level architecture overview](images/solution_architecture/figure_1.svg "Figure 1: High-level architecture overview")
The Corona-Warn-App (see [scoping document](https://github.com/corona-warn-app/cwa-documentation/blob/master/scoping_document.md )), shown centrally in *Figure 1*, enables individuals to trace their personal exposure risk via their mobile phones. The Corona-Warn-App uses a new framework provided by Apple and Google called [Exposure Notification Framework](https://www.apple.com/covid19/contacttracing). The framework employs [Bluetooth Low Energy (BLE)](https://en.wikipedia.org/wiki/Bluetooth_Low_Energy) mechanics. BLE lets the individual mobile phones act as beacons meaning that they constantly broadcast a temporary identifier called Rolling Proximity Identifier (RPI) that is remembered and, at the same time, lets the mobile phone scan for identifiers of other mobile phones. This is shown on the right side of *Figure 1*. The Corona-Warn-App (see [scoping document](https://github.com/corona-warn-app/cwa-documentation/blob/master/scoping_document.md )), shown centrally in *Figure 1*, enables individuals to trace their personal exposure risk via their mobile phones. The Corona-Warn-App uses a new framework provided by Apple and Google called [Exposure Notification Framework](https://www.apple.com/covid19/contacttracing). The framework employs [Bluetooth Low Energy (BLE)](https://en.wikipedia.org/wiki/Bluetooth_Low_Energy) mechanics. BLE lets the individual mobile phones act as beacons meaning that they constantly broadcast a temporary identifier called Rolling Proximity Identifier (RPI) that is remembered and, at the same time, lets the mobile phone scan for identifiers of other mobile phones. This is shown on the right side of *Figure 1*.
Identifiers are ID numbers sent out by the mobile phones. To ensure privacy and to prevent the tracking of movement patterns of the app user, those broadcasted identifiers are only temporary and change constantly. New identifiers are derived from a Temporary Exposure Key (TEK) that is substituted at midnight (UTC) every day through means of cryptography. For a more detailed explanantion, see *Figure 10*. Once a TEK is linked to a positive test result, it remains technically the same, but is then called a Diagnosis Key. Identifiers are ID numbers sent out by the mobile phones. To ensure privacy and to prevent the tracking of movement patterns of the app user, those broadcasted identifiers are only temporary and change constantly. New identifiers are derived from a Temporary Exposure Key (TEK) that is substituted at midnight (UTC) every day through means of cryptography. For a more detailed explanation, see *Figure 10*. Once a TEK is linked to a positive test result, it remains technically the same, but is then called a Diagnosis Key.
The collected identifiers from other users as well as the own keys which can later be used to derive the identifiers are stored locally on the phone in the secure storage of the framework provided by Apple and Google. The application cannot access this secure storage directly, but only through the interfaces the Exposure Notification Framework provides. To prevent misuse, some of these interfaces are subjected to [rate limiting](https://developer.apple.com/documentation/exposurenotification/enmanager/3586331-detectexposures). If app users are tested positively for SARS-CoV-2, they can update their status in the app by providing a verification of their test and select an option to send their recent keys from up to 14 days back. On the Corona-Warn-App backend server, all keys of positively tested individuals are aggregated and are then made available to all mobile phones that have the app installed. Additionally, the configuration parameters for the framework are available for download, so that adjustments to the risk score calculation can be made, see the *Risk Scores* section. The collected identifiers from other users as well as the own keys which can later be used to derive the identifiers are stored locally on the phone in the secure storage of the framework provided by Apple and Google. The application cannot access this secure storage directly, but only through the interfaces the Exposure Notification Framework provides. To prevent misuse, some of these interfaces are subjected to [rate limiting](https://developer.apple.com/documentation/exposurenotification/enmanager/3586331-detectexposures). If app users are tested positively for SARS-CoV-2, they can update their status in the app by providing a verification of their test and select an option to send their recent keys from up to 14 days back. On the Corona-Warn-App backend server, all keys of positively tested individuals are aggregated and are then made available to all mobile phones that have the app installed. Additionally, the configuration parameters for the framework are available for download, so that adjustments to the risk score calculation can be made, see the *Risk Scores* section.
Once the keys and the exposure detection configuration have been downloaded, the data is handed over to the Exposure Notification framework, which analyzes whether one of the identifiers collected by the mobile phone matches to those of a positively tested individual. Additionally, the metadata that has been broadcasted together with the identifiers such as the transmit power can now be decrypted and used. Based on the collected data, the Exposure Notification Framework provided by Apple and Google calculates a risk score for each individual exposure as well as for the overall situation. Exposures are defined as an aggregation of all encounters with another individual on a single calendar day (UTC timezone). For privacy reasons, it is not possible to track encounters with other individuals across multiple days. Once the keys and the exposure detection configuration have been downloaded, the data is handed over to the Exposure Notification framework, which analyzes whether one of the identifiers collected by the mobile phone matches to those of a positively tested individual. Additionally, the metadata that has been broadcasted together with the identifiers such as the transmit power can now be decrypted and used. Based on the collected data, the Exposure Notification Framework provided by Apple and Google calculates a risk score for each individual exposure as well as for the overall situation. Exposures are defined as an aggregation of all encounters with another individual on a single calendar day (UTC timezone). For privacy reasons, it is not possible to track encounters with other individuals across multiple days.