CovidBracelet/src/ens/records.c

166 lines
5.6 KiB
C

#include <string.h>
#include "../covid_types.h"
#include "records.h"
#include "sequencenumber.h"
#include "storage.h"
int ens_records_iterator_init_range(record_iterator_t* iterator,
record_sequence_number_t* opt_start,
record_sequence_number_t* opt_end) {
iterator->sn_next = opt_start ? *opt_start : get_oldest_sequence_number();
iterator->sn_end = opt_end ? *opt_end : get_latest_sequence_number();
if (get_num_records() == 0) {
iterator->finished = true; // no contacts -> no iteration :)
} else {
iterator->finished = false;
}
return 0;
}
/**
* Find an entry via binary search for the timestamp.
*
* @param record pointer to the location, where the loaded record shall be stored
* @param target timestamp for which to find the nearest entry for
* @param start lower bound for the binary search
* @param end upper bound for the binary search
*/
// TODO lome: maybe add flag for indicating whether older or newer contact shall be loaded
int find_record_via_binary_search(record_t* record,
uint32_t target,
record_sequence_number_t start,
record_sequence_number_t end) {
// TODO lome: 1. handle entries with deleted/invalid data -> load left/right entry
// TODO lome: 2. handle possible deadlocks because of 1.
// TODO lome: 3. check, if oldest ts is newer than the latest -> return error that needs to be handled by the
// calling function
record_t start_record;
record_t end_record;
// load the initial start and end record
int rc = load_record(&start_record, start);
if (rc) {
return rc;
}
rc = load_record(&end_record, end);
if (rc) {
return rc;
}
do {
// TODO lome: first entry for start, last entry for end
// calculate the contact in the middle between start and end and load it
record_sequence_number_t middle = (start_record.sn + end_record.sn) / 2;
int rc = load_record(record, middle);
if (rc) {
return rc;
}
// determine the new start and end
if (record->timestamp > target) {
memcpy(&start_record, record, sizeof(record_t));
} else {
memcpy(&end_record, record, sizeof(record_t));
}
// break, if we are at the exact timestamp or our start and end are next to each other
} while (record->timestamp != target && (end_record.sn - start_record.sn) > 1);
return 0;
}
// TODO: This iterator does neither check if the sequence numbers wrapped around while iteration. As a result, first
// results could have later timestamps than following entries
int ens_records_iterator_init_timerange(record_iterator_t* iterator, uint32_t* ts_start, uint32_t* ts_end) {
record_sequence_number_t oldest_sn = get_oldest_sequence_number();
record_sequence_number_t latest_sn = get_latest_sequence_number();
// try to find the oldest contact in our timerange
record_t start_rec;
int rc = load_record(&start_rec, oldest_sn);
if (rc) {
return rc;
}
// if starting timestamp lies in our bounds, perform binary search
// TODO lome: check, if ts_start and ts_end are NULL -> use oldest/latest sn then
// TODO lome: move oldest_sn and latest_sn to binary_search function
// TODO lome: maybe keep track of the oldest and newest timestamp (optimization for later)
if (start_rec.timestamp < *ts_start) {
// TODO lome: only "return" sn, not actual record
rc = find_record_via_binary_search(&start_rec, *ts_start, oldest_sn, latest_sn);
if (rc) {
return rc;
}
}
// try to find the newest contact within out timerange
record_t end_rec;
rc = load_record(&end_rec, latest_sn);
if (rc) {
return rc;
}
// if ending timestamp lies in our bounds, perform binary search
if (end_rec.timestamp > *ts_end) {
rc = find_record_via_binary_search(&end_rec, *ts_end, oldest_sn, latest_sn);
if (rc) {
return rc;
}
}
ens_records_iterator_init_range(iterator, &start_rec.sn, &end_rec.sn);
return 0;
}
record_t* ens_records_iterator_next(record_iterator_t* iter) {
record_t* next = NULL;
while (next == NULL && !iter->finished) {
record_t contact;
// try to load the next contact
int res = load_record(&contact, iter->sn_next);
if (!res) {
next = &iter->current;
memcpy(next, &contact, sizeof(record_t));
}
if (sn_equal(iter->sn_next, iter->sn_end)) {
iter->finished = true; // this iterator will finish after this execution
} else {
// increase the current sn
iter->sn_next = sn_increment(iter->sn_next);
}
}
return next;
}
int ens_record_iterator_clear(record_iterator_t* iter) {
// clear all relevant fields in the iterator
iter->finished = true;
iter->sn_next = 0;
iter->sn_end = 0;
memset(&iter->current, 0, sizeof(iter->current));
return 0;
}
uint8_t ens_records_iterate_with_callback(record_iterator_t* iter, ens_record_iterator_cb_t cb, void* userdata) {
record_t* cur = ens_records_iterator_next(iter);
bool cont = true;
while (cur != NULL && cont) {
int cb_res = cb(cur, userdata);
if (cb_res == ENS_RECORD_ITER_STOP) {
cont = false;
}
}
if (cont) {
cb(NULL, userdata); // we call the callback one last time but with null data
}
return 0;
}