CovidBracelet/src/covid.c

231 lines
6.6 KiB
C

/*
* Copyright (c) 2020 Olaf Landsiedel
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/types.h>
#include <stddef.h>
#include <sys/printk.h>
#include <sys/util.h>
#include <string.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include "exposure-notification.h"
#include "covid_types.h"
#include "contacts.h"
#include "covid.h"
typedef struct covid_adv_svd {
uint16_t ens;
rolling_proximity_identifier_t rolling_proximity_identifier;
associated_encrypted_metadata_t associated_encrypted_metadata;
} __packed covid_adv_svd_t;
const static bt_metadata_t bt_metadata= {
.version = 0b00100000,
.tx_power = 0, //TODO set to actual transmit power
.rsv1 = 0,
.rsv2 = 0,
};
#define COVID_ENS (0xFD6F)
static covid_adv_svd_t covid_adv_svd= {
.ens = COVID_ENS,
//do not initialiuze the rest of the packet, will write this later
};
static struct bt_data ad[] = {
BT_DATA_BYTES(BT_DATA_FLAGS, (BT_LE_AD_GENERAL | BT_LE_AD_NO_BREDR)),
BT_DATA_BYTES(BT_DATA_UUID16_ALL, 0x6f, 0xfd), //0xFD6F Exposure Notification Service
BT_DATA(BT_DATA_SVC_DATA16, &covid_adv_svd, sizeof(covid_adv_svd_t))
};
static void scan_cb(const bt_addr_le_t *addr, s8_t rssi, u8_t adv_type, struct net_buf_simple *buf)
{
if( adv_type == 3 ){
u8_t len = 0;
while (buf->len > 1) {
u8_t type;
len = net_buf_simple_pull_u8(buf);
if (!len) {
break;
}
/* Check if field length is correct */
if (len > buf->len || buf->len < 1) {
break;
}
type = net_buf_simple_pull_u8(buf);
if (type == BT_DATA_SVC_DATA16 && len == sizeof(covid_adv_svd_t) + 1){
covid_adv_svd_t* rx_adv = (covid_adv_svd_t*) buf->data;
if (rx_adv->ens == COVID_ENS){
check_add_contact(k_uptime_get() / 1000, &rx_adv->rolling_proximity_identifier, &rx_adv->associated_encrypted_metadata, rssi);
}
}
net_buf_simple_pull(buf, len - 1); //consume the rest, note we already consumed one byte via net_buf_simple_pull_u8(buf)
}
}
}
#define NUM_PERIOD_KEYS (14)
static period_t periods[NUM_PERIOD_KEYS];
static int current_period_index = 0;
static ENIntervalNumber currentInterval;
static unsigned int period_cnt = 0;
static ENPeriodMetadataEncryptionKey periodMetadataEncryptionKey;
static ENIntervalIdentifier intervalIdentifier;
static associated_encrypted_metadata_t encryptedMetadata;
static bool init = 1;
static bool infected = 0;
static void new_period_key(time_t currentTime ){
printk("\n----------------------------------------\n\n");
printk("\n----------------------------------------\n\n");
printk("*** New Period\n");
current_period_index = period_cnt % NUM_PERIOD_KEYS;
periods[current_period_index].periodInterval = en_get_interval_number_at_period_start(currentTime);
printk("periodInterval %u\n", periods[current_period_index].periodInterval);
en_generate_period_key(&periods[current_period_index].periodKey);
period_cnt++;
}
//To be called when new keys are needed
static void check_keys(struct k_work *work){
// we check the current time to know if we actually need to regenerate anything
// TODO: Use real unix timestamp!: currentTime = time(NULL);
time_t currentTime = k_uptime_get() / 1000;
ENIntervalNumber newInterval = en_get_interval_number(currentTime);
if( currentInterval != newInterval || init){
currentInterval = newInterval;
bool newPeriod = ((currentInterval - periods[current_period_index].periodInterval) >= EN_TEK_ROLLING_PERIOD);
// we check if we need to generate new keys
if (newPeriod || init) {
new_period_key(currentTime);
}
// we now generate the new interval identifier and re-encrypt the metadata
en_derive_interval_identifier(&intervalIdentifier, &periods[current_period_index].periodKey, currentInterval);
en_encrypt_interval_metadata(&periodMetadataEncryptionKey, &intervalIdentifier, (unsigned char*)&bt_metadata, (unsigned char*)&encryptedMetadata, sizeof(associated_encrypted_metadata_t));
// broadcast intervalIdentifier plus encryptedMetada according to specs
//printk("\n----------------------------------------\n\n");
printk("Time: %llu, ", currentTime);
printk("Interval: %u, ", currentInterval);
printk("RPI: "); print_rpi((rolling_proximity_identifier_t*)&intervalIdentifier); printk(", ");
printk("AEM: "); print_aem(&encryptedMetadata); printk("\n");
//TODO do we have to worry about race conditions here?
//worst case: we would be advertising a wrong key for a while
memcpy(&covid_adv_svd.rolling_proximity_identifier, &intervalIdentifier, sizeof(rolling_proximity_identifier_t));
memcpy(&covid_adv_svd.associated_encrypted_metadata, &encryptedMetadata, sizeof(associated_encrypted_metadata_t));
if( !init ){
key_change(current_period_index);
}
init = 0;
}
}
K_WORK_DEFINE(my_work, check_keys);
static void my_timer_handler(struct k_timer *dummy){
k_work_submit(&my_work);
}
K_TIMER_DEFINE(my_timer, my_timer_handler, NULL);
static const struct bt_le_scan_param scan_param = {
.type = BT_HCI_LE_SCAN_PASSIVE,
.filter_dup = BT_HCI_LE_SCAN_FILTER_DUP_DISABLE,
.interval = 0x0010, //Scan Interval (N * 0.625 ms), TODO: set to correct interval
.window = 0x0010, //Scan Window (N * 0.625 ms), TODO: set to correct interval
};
#define KEY_CHECK_INTERVAL (K_MSEC(EN_INTERVAL_LENGTH * 1000 / 10))
int init_covid(){
// TODO: Use real unix timestamp!: currentTime = time(NULL);
init = 1;
period_cnt = 0;
infected = 0;
check_keys(NULL);
int err = 0;
err = bt_le_scan_start(&scan_param, scan_cb);
if (err) {
printk("Starting scanning failed (err %d)\n", err);
return err;
}
k_timer_start(&my_timer, KEY_CHECK_INTERVAL, KEY_CHECK_INTERVAL);
return 0;
}
int do_covid(){
//printk("covid start\n");
int err = 0;
err = bt_le_adv_start(BT_LE_ADV_NCONN, ad, ARRAY_SIZE(ad), NULL, 0);
if (err) {
printk("Advertising failed to start (err %d)\n", err);
return err;
}
k_sleep(K_SECONDS(10));
err = bt_le_adv_stop();
if (err) {
printk("Advertising failed to stop (err %d)\n", err);
return err;
}
//printk("covid end\n");
return 0;
}
bool get_infection(){
return infected;
}
void set_infection(bool _infected){
infected = _infected;
}
unsigned int get_period_cnt_if_infected(){
if( !infected ){
return 0;
}
return period_cnt;
}
period_t* get_period_if_infected(unsigned int id, size_t* size){
if( !infected || id >= NUM_PERIOD_KEYS || id >= period_cnt ){
*size = 0;
return NULL;
}
*size = sizeof(period_t);
return &periods[id];
}
int get_index_by_interval(ENIntervalNumber periodInterval){
int index = 0;
while( index < NUM_PERIOD_KEYS || index < period_cnt ){
if( periods[index].periodInterval == periodInterval){
return index;
}
index++;
}
return -1;
}