CovidBracelet/lib/protobuf-c/protobuf-c.c

3668 lines
94 KiB
C

/*
* Copyright (c) 2008-2015, Dave Benson and the protobuf-c authors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*! \file
* Support library for `protoc-c` generated code.
*
* This file implements the public API used by the code generated
* by `protoc-c`.
*
* \authors Dave Benson and the protobuf-c authors
*
* \copyright 2008-2014. Licensed under the terms of the [BSD-2-Clause] license.
*/
/**
* \todo 64-BIT OPTIMIZATION: certain implementations use 32-bit math
* even on 64-bit platforms (uint64_size, uint64_pack, parse_uint64).
*
* \todo Use size_t consistently.
*/
#include <stdlib.h> /* for malloc, free */
#include <string.h> /* for strcmp, strlen, memcpy, memmove, memset */
#include "protobuf-c.h"
#define TRUE 1
#define FALSE 0
#define PROTOBUF_C__ASSERT_NOT_REACHED() assert(0)
/* Workaround for Microsoft compilers. */
#ifdef _MSC_VER
# define inline __inline
#endif
/**
* \defgroup internal Internal functions and macros
*
* These are not exported by the library but are useful to developers working
* on `libprotobuf-c` itself.
*/
/**
* \defgroup macros Utility macros for manipulating structures
*
* Macros and constants used to manipulate the base "classes" generated by
* `protobuf-c`. They also define limits and check correctness.
*
* \ingroup internal
* @{
*/
/** The maximum length of a 64-bit integer in varint encoding. */
#define MAX_UINT64_ENCODED_SIZE 10
#ifndef PROTOBUF_C_UNPACK_ERROR
# define PROTOBUF_C_UNPACK_ERROR(...)
#endif
#if !defined(_WIN32) || !defined(PROTOBUF_C_USE_SHARED_LIB)
const char protobuf_c_empty_string[] = "";
#endif
/**
* Internal `ProtobufCMessage` manipulation macro.
*
* Base macro for manipulating a `ProtobufCMessage`. Used by STRUCT_MEMBER() and
* STRUCT_MEMBER_PTR().
*/
#define STRUCT_MEMBER_P(struct_p, struct_offset) \
((void *) ((uint8_t *) (struct_p) + (struct_offset)))
/**
* Return field in a `ProtobufCMessage` based on offset.
*
* Take a pointer to a `ProtobufCMessage` and find the field at the offset.
* Cast it to the passed type.
*/
#define STRUCT_MEMBER(member_type, struct_p, struct_offset) \
(*(member_type *) STRUCT_MEMBER_P((struct_p), (struct_offset)))
/**
* Return field in a `ProtobufCMessage` based on offset.
*
* Take a pointer to a `ProtobufCMessage` and find the field at the offset. Cast
* it to a pointer to the passed type.
*/
#define STRUCT_MEMBER_PTR(member_type, struct_p, struct_offset) \
((member_type *) STRUCT_MEMBER_P((struct_p), (struct_offset)))
/* Assertions for magic numbers. */
#define ASSERT_IS_ENUM_DESCRIPTOR(desc) \
assert((desc)->magic == PROTOBUF_C__ENUM_DESCRIPTOR_MAGIC)
#define ASSERT_IS_MESSAGE_DESCRIPTOR(desc) \
assert((desc)->magic == PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC)
#define ASSERT_IS_MESSAGE(message) \
ASSERT_IS_MESSAGE_DESCRIPTOR((message)->descriptor)
#define ASSERT_IS_SERVICE_DESCRIPTOR(desc) \
assert((desc)->magic == PROTOBUF_C__SERVICE_DESCRIPTOR_MAGIC)
/**@}*/
/* --- version --- */
const char *
protobuf_c_version(void)
{
return PROTOBUF_C_VERSION;
}
uint32_t
protobuf_c_version_number(void)
{
return PROTOBUF_C_VERSION_NUMBER;
}
/* --- allocator --- */
static void *
system_alloc(void *allocator_data, size_t size)
{
(void)allocator_data;
return malloc(size);
}
static void
system_free(void *allocator_data, void *data)
{
(void)allocator_data;
free(data);
}
static inline void *
do_alloc(ProtobufCAllocator *allocator, size_t size)
{
return allocator->alloc(allocator->allocator_data, size);
}
static inline void
do_free(ProtobufCAllocator *allocator, void *data)
{
if (data != NULL)
allocator->free(allocator->allocator_data, data);
}
/*
* This allocator uses the system's malloc() and free(). It is the default
* allocator used if NULL is passed as the ProtobufCAllocator to an exported
* function.
*/
static ProtobufCAllocator protobuf_c__allocator = {
.alloc = &system_alloc,
.free = &system_free,
.allocator_data = NULL,
};
/* === buffer-simple === */
void
protobuf_c_buffer_simple_append(ProtobufCBuffer *buffer,
size_t len, const uint8_t *data)
{
ProtobufCBufferSimple *simp = (ProtobufCBufferSimple *) buffer;
size_t new_len = simp->len + len;
if (new_len > simp->alloced) {
ProtobufCAllocator *allocator = simp->allocator;
size_t new_alloced = simp->alloced * 2;
uint8_t *new_data;
if (allocator == NULL)
allocator = &protobuf_c__allocator;
while (new_alloced < new_len)
new_alloced += new_alloced;
new_data = do_alloc(allocator, new_alloced);
if (!new_data)
return;
memcpy(new_data, simp->data, simp->len);
if (simp->must_free_data)
do_free(allocator, simp->data);
else
simp->must_free_data = TRUE;
simp->data = new_data;
simp->alloced = new_alloced;
}
memcpy(simp->data + simp->len, data, len);
simp->len = new_len;
}
/**
* \defgroup packedsz protobuf_c_message_get_packed_size() implementation
*
* Routines mainly used by protobuf_c_message_get_packed_size().
*
* \ingroup internal
* @{
*/
/**
* Return the number of bytes required to store the tag for the field. Includes
* 3 bits for the wire-type, and a single bit that denotes the end-of-tag.
*
* \param number
* Field tag to encode.
* \return
* Number of bytes required.
*/
static inline size_t
get_tag_size(uint32_t number)
{
if (number < (1UL << 4)) {
return 1;
} else if (number < (1UL << 11)) {
return 2;
} else if (number < (1UL << 18)) {
return 3;
} else if (number < (1UL << 25)) {
return 4;
} else {
return 5;
}
}
/**
* Return the number of bytes required to store a variable-length unsigned
* 32-bit integer in base-128 varint encoding.
*
* \param v
* Value to encode.
* \return
* Number of bytes required.
*/
static inline size_t
uint32_size(uint32_t v)
{
if (v < (1UL << 7)) {
return 1;
} else if (v < (1UL << 14)) {
return 2;
} else if (v < (1UL << 21)) {
return 3;
} else if (v < (1UL << 28)) {
return 4;
} else {
return 5;
}
}
/**
* Return the number of bytes required to store a variable-length signed 32-bit
* integer in base-128 varint encoding.
*
* \param v
* Value to encode.
* \return
* Number of bytes required.
*/
static inline size_t
int32_size(int32_t v)
{
if (v < 0) {
return 10;
} else if (v < (1L << 7)) {
return 1;
} else if (v < (1L << 14)) {
return 2;
} else if (v < (1L << 21)) {
return 3;
} else if (v < (1L << 28)) {
return 4;
} else {
return 5;
}
}
/**
* Return the ZigZag-encoded 32-bit unsigned integer form of a 32-bit signed
* integer.
*
* \param v
* Value to encode.
* \return
* ZigZag encoded integer.
*/
static inline uint32_t
zigzag32(int32_t v)
{
// Note: the right-shift must be arithmetic
// Note: left shift must be unsigned because of overflow
return ((uint32_t)(v) << 1) ^ (uint32_t)(v >> 31);
}
/**
* Return the number of bytes required to store a signed 32-bit integer,
* converted to an unsigned 32-bit integer with ZigZag encoding, using base-128
* varint encoding.
*
* \param v
* Value to encode.
* \return
* Number of bytes required.
*/
static inline size_t
sint32_size(int32_t v)
{
return uint32_size(zigzag32(v));
}
/**
* Return the number of bytes required to store a 64-bit unsigned integer in
* base-128 varint encoding.
*
* \param v
* Value to encode.
* \return
* Number of bytes required.
*/
static inline size_t
uint64_size(uint64_t v)
{
uint32_t upper_v = (uint32_t) (v >> 32);
if (upper_v == 0) {
return uint32_size((uint32_t) v);
} else if (upper_v < (1UL << 3)) {
return 5;
} else if (upper_v < (1UL << 10)) {
return 6;
} else if (upper_v < (1UL << 17)) {
return 7;
} else if (upper_v < (1UL << 24)) {
return 8;
} else if (upper_v < (1UL << 31)) {
return 9;
} else {
return 10;
}
}
/**
* Return the ZigZag-encoded 64-bit unsigned integer form of a 64-bit signed
* integer.
*
* \param v
* Value to encode.
* \return
* ZigZag encoded integer.
*/
static inline uint64_t
zigzag64(int64_t v)
{
// Note: the right-shift must be arithmetic
// Note: left shift must be unsigned because of overflow
return ((uint64_t)(v) << 1) ^ (uint64_t)(v >> 63);
}
/**
* Return the number of bytes required to store a signed 64-bit integer,
* converted to an unsigned 64-bit integer with ZigZag encoding, using base-128
* varint encoding.
*
* \param v
* Value to encode.
* \return
* Number of bytes required.
*/
static inline size_t
sint64_size(int64_t v)
{
return uint64_size(zigzag64(v));
}
/**
* Calculate the serialized size of a single required message field, including
* the space needed by the preceding tag.
*
* \param field
* Field descriptor for member.
* \param member
* Field to encode.
* \return
* Number of bytes required.
*/
static size_t
required_field_get_packed_size(const ProtobufCFieldDescriptor *field,
const void *member)
{
size_t rv = get_tag_size(field->id);
switch (field->type) {
case PROTOBUF_C_TYPE_SINT32:
return rv + sint32_size(*(const int32_t *) member);
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
return rv + int32_size(*(const int32_t *) member);
case PROTOBUF_C_TYPE_UINT32:
return rv + uint32_size(*(const uint32_t *) member);
case PROTOBUF_C_TYPE_SINT64:
return rv + sint64_size(*(const int64_t *) member);
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
return rv + uint64_size(*(const uint64_t *) member);
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
return rv + 4;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
return rv + 8;
case PROTOBUF_C_TYPE_BOOL:
return rv + 1;
case PROTOBUF_C_TYPE_FLOAT:
return rv + 4;
case PROTOBUF_C_TYPE_DOUBLE:
return rv + 8;
case PROTOBUF_C_TYPE_STRING: {
const char *str = *(char * const *) member;
size_t len = str ? strlen(str) : 0;
return rv + uint32_size(len) + len;
}
case PROTOBUF_C_TYPE_BYTES: {
size_t len = ((const ProtobufCBinaryData *) member)->len;
return rv + uint32_size(len) + len;
}
case PROTOBUF_C_TYPE_MESSAGE: {
const ProtobufCMessage *msg = *(ProtobufCMessage * const *) member;
size_t subrv = msg ? protobuf_c_message_get_packed_size(msg) : 0;
return rv + uint32_size(subrv) + subrv;
}
}
PROTOBUF_C__ASSERT_NOT_REACHED();
return 0;
}
/**
* Calculate the serialized size of a single oneof message field, including
* the space needed by the preceding tag. Returns 0 if the oneof field isn't
* selected or is not set.
*
* \param field
* Field descriptor for member.
* \param oneof_case
* Enum value that selects the field in the oneof.
* \param member
* Field to encode.
* \return
* Number of bytes required.
*/
static size_t
oneof_field_get_packed_size(const ProtobufCFieldDescriptor *field,
uint32_t oneof_case,
const void *member)
{
if (oneof_case != field->id) {
return 0;
}
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING)
{
const void *ptr = *(const void * const *) member;
if (ptr == NULL || ptr == field->default_value)
return 0;
}
return required_field_get_packed_size(field, member);
}
/**
* Calculate the serialized size of a single optional message field, including
* the space needed by the preceding tag. Returns 0 if the optional field isn't
* set.
*
* \param field
* Field descriptor for member.
* \param has
* True if the field exists, false if not.
* \param member
* Field to encode.
* \return
* Number of bytes required.
*/
static size_t
optional_field_get_packed_size(const ProtobufCFieldDescriptor *field,
const protobuf_c_boolean has,
const void *member)
{
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING)
{
const void *ptr = *(const void * const *) member;
if (ptr == NULL || ptr == field->default_value)
return 0;
} else {
if (!has)
return 0;
}
return required_field_get_packed_size(field, member);
}
static protobuf_c_boolean
field_is_zeroish(const ProtobufCFieldDescriptor *field,
const void *member)
{
protobuf_c_boolean ret = FALSE;
switch (field->type) {
case PROTOBUF_C_TYPE_BOOL:
ret = (0 == *(const protobuf_c_boolean *) member);
break;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_SINT32:
case PROTOBUF_C_TYPE_INT32:
case PROTOBUF_C_TYPE_UINT32:
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
ret = (0 == *(const uint32_t *) member);
break;
case PROTOBUF_C_TYPE_SINT64:
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
ret = (0 == *(const uint64_t *) member);
break;
case PROTOBUF_C_TYPE_FLOAT:
ret = (0 == *(const float *) member);
break;
case PROTOBUF_C_TYPE_DOUBLE:
ret = (0 == *(const double *) member);
break;
case PROTOBUF_C_TYPE_STRING:
ret = (NULL == *(const char * const *) member) ||
('\0' == **(const char * const *) member);
break;
case PROTOBUF_C_TYPE_BYTES:
case PROTOBUF_C_TYPE_MESSAGE:
ret = (NULL == *(const void * const *) member);
break;
default:
ret = TRUE;
break;
}
return ret;
}
/**
* Calculate the serialized size of a single unlabeled message field, including
* the space needed by the preceding tag. Returns 0 if the field isn't set or
* if it is set to a "zeroish" value (null pointer or 0 for numerical values).
* Unlabeled fields are supported only in proto3.
*
* \param field
* Field descriptor for member.
* \param member
* Field to encode.
* \return
* Number of bytes required.
*/
static size_t
unlabeled_field_get_packed_size(const ProtobufCFieldDescriptor *field,
const void *member)
{
if (field_is_zeroish(field, member))
return 0;
return required_field_get_packed_size(field, member);
}
/**
* Calculate the serialized size of repeated message fields, which may consist
* of any number of values (including 0). Includes the space needed by the
* preceding tags (as needed).
*
* \param field
* Field descriptor for member.
* \param count
* Number of repeated field members.
* \param member
* Field to encode.
* \return
* Number of bytes required.
*/
static size_t
repeated_field_get_packed_size(const ProtobufCFieldDescriptor *field,
size_t count, const void *member)
{
size_t header_size;
size_t rv = 0;
unsigned i;
void *array = *(void * const *) member;
if (count == 0)
return 0;
header_size = get_tag_size(field->id);
if (0 == (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED))
header_size *= count;
switch (field->type) {
case PROTOBUF_C_TYPE_SINT32:
for (i = 0; i < count; i++)
rv += sint32_size(((int32_t *) array)[i]);
break;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
for (i = 0; i < count; i++)
rv += int32_size(((int32_t *) array)[i]);
break;
case PROTOBUF_C_TYPE_UINT32:
for (i = 0; i < count; i++)
rv += uint32_size(((uint32_t *) array)[i]);
break;
case PROTOBUF_C_TYPE_SINT64:
for (i = 0; i < count; i++)
rv += sint64_size(((int64_t *) array)[i]);
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
for (i = 0; i < count; i++)
rv += uint64_size(((uint64_t *) array)[i]);
break;
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
rv += 4 * count;
break;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
rv += 8 * count;
break;
case PROTOBUF_C_TYPE_BOOL:
rv += count;
break;
case PROTOBUF_C_TYPE_STRING:
for (i = 0; i < count; i++) {
size_t len = strlen(((char **) array)[i]);
rv += uint32_size(len) + len;
}
break;
case PROTOBUF_C_TYPE_BYTES:
for (i = 0; i < count; i++) {
size_t len = ((ProtobufCBinaryData *) array)[i].len;
rv += uint32_size(len) + len;
}
break;
case PROTOBUF_C_TYPE_MESSAGE:
for (i = 0; i < count; i++) {
size_t len = protobuf_c_message_get_packed_size(
((ProtobufCMessage **) array)[i]);
rv += uint32_size(len) + len;
}
break;
}
if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED))
header_size += uint32_size(rv);
return header_size + rv;
}
/**
* Calculate the serialized size of an unknown field, i.e. one that is passed
* through mostly uninterpreted. This is required for forward compatibility if
* new fields are added to the message descriptor.
*
* \param field
* Unknown field type.
* \return
* Number of bytes required.
*/
static inline size_t
unknown_field_get_packed_size(const ProtobufCMessageUnknownField *field)
{
return get_tag_size(field->tag) + field->len;
}
/**@}*/
/*
* Calculate the serialized size of the message.
*/
size_t protobuf_c_message_get_packed_size(const ProtobufCMessage *message)
{
unsigned i;
size_t rv = 0;
ASSERT_IS_MESSAGE(message);
for (i = 0; i < message->descriptor->n_fields; i++) {
const ProtobufCFieldDescriptor *field =
message->descriptor->fields + i;
const void *member =
((const char *) message) + field->offset;
const void *qmember =
((const char *) message) + field->quantifier_offset;
if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
rv += required_field_get_packed_size(field, member);
} else if ((field->label == PROTOBUF_C_LABEL_OPTIONAL ||
field->label == PROTOBUF_C_LABEL_NONE) &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF))) {
rv += oneof_field_get_packed_size(
field,
*(const uint32_t *) qmember,
member
);
} else if (field->label == PROTOBUF_C_LABEL_OPTIONAL) {
rv += optional_field_get_packed_size(
field,
*(protobuf_c_boolean *) qmember,
member
);
} else if (field->label == PROTOBUF_C_LABEL_NONE) {
rv += unlabeled_field_get_packed_size(
field,
member
);
} else {
rv += repeated_field_get_packed_size(
field,
*(const size_t *) qmember,
member
);
}
}
for (i = 0; i < message->n_unknown_fields; i++)
rv += unknown_field_get_packed_size(&message->unknown_fields[i]);
return rv;
}
/**
* \defgroup pack protobuf_c_message_pack() implementation
*
* Routines mainly used by protobuf_c_message_pack().
*
* \ingroup internal
* @{
*/
/**
* Pack an unsigned 32-bit integer in base-128 varint encoding and return the
* number of bytes written, which must be 5 or less.
*
* \param value
* Value to encode.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static inline size_t
uint32_pack(uint32_t value, uint8_t *out)
{
unsigned rv = 0;
if (value >= 0x80) {
out[rv++] = value | 0x80;
value >>= 7;
if (value >= 0x80) {
out[rv++] = value | 0x80;
value >>= 7;
if (value >= 0x80) {
out[rv++] = value | 0x80;
value >>= 7;
if (value >= 0x80) {
out[rv++] = value | 0x80;
value >>= 7;
}
}
}
}
/* assert: value<128 */
out[rv++] = value;
return rv;
}
/**
* Pack a signed 32-bit integer and return the number of bytes written.
* Negative numbers are encoded as two's complement 64-bit integers.
*
* \param value
* Value to encode.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static inline size_t
int32_pack(int32_t value, uint8_t *out)
{
if (value < 0) {
out[0] = value | 0x80;
out[1] = (value >> 7) | 0x80;
out[2] = (value >> 14) | 0x80;
out[3] = (value >> 21) | 0x80;
out[4] = (value >> 28) | 0x80;
out[5] = out[6] = out[7] = out[8] = 0xff;
out[9] = 0x01;
return 10;
} else {
return uint32_pack(value, out);
}
}
/**
* Pack a signed 32-bit integer using ZigZag encoding and return the number of
* bytes written.
*
* \param value
* Value to encode.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static inline size_t
sint32_pack(int32_t value, uint8_t *out)
{
return uint32_pack(zigzag32(value), out);
}
/**
* Pack a 64-bit unsigned integer using base-128 varint encoding and return the
* number of bytes written.
*
* \param value
* Value to encode.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static size_t
uint64_pack(uint64_t value, uint8_t *out)
{
uint32_t hi = (uint32_t) (value >> 32);
uint32_t lo = (uint32_t) value;
unsigned rv;
if (hi == 0)
return uint32_pack((uint32_t) lo, out);
out[0] = (lo) | 0x80;
out[1] = (lo >> 7) | 0x80;
out[2] = (lo >> 14) | 0x80;
out[3] = (lo >> 21) | 0x80;
if (hi < 8) {
out[4] = (hi << 4) | (lo >> 28);
return 5;
} else {
out[4] = ((hi & 7) << 4) | (lo >> 28) | 0x80;
hi >>= 3;
}
rv = 5;
while (hi >= 128) {
out[rv++] = hi | 0x80;
hi >>= 7;
}
out[rv++] = hi;
return rv;
}
/**
* Pack a 64-bit signed integer in ZigZag encoding and return the number of
* bytes written.
*
* \param value
* Value to encode.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static inline size_t
sint64_pack(int64_t value, uint8_t *out)
{
return uint64_pack(zigzag64(value), out);
}
/**
* Pack a 32-bit quantity in little-endian byte order. Used for protobuf wire
* types fixed32, sfixed32, float. Similar to "htole32".
*
* \param value
* Value to encode.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static inline size_t
fixed32_pack(uint32_t value, void *out)
{
#if !defined(WORDS_BIGENDIAN)
memcpy(out, &value, 4);
#else
uint8_t *buf = out;
buf[0] = value;
buf[1] = value >> 8;
buf[2] = value >> 16;
buf[3] = value >> 24;
#endif
return 4;
}
/**
* Pack a 64-bit quantity in little-endian byte order. Used for protobuf wire
* types fixed64, sfixed64, double. Similar to "htole64".
*
* \todo The big-endian impl is really only good for 32-bit machines, a 64-bit
* version would be appreciated, plus a way to decide to use 64-bit math where
* convenient.
*
* \param value
* Value to encode.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static inline size_t
fixed64_pack(uint64_t value, void *out)
{
#if !defined(WORDS_BIGENDIAN)
memcpy(out, &value, 8);
#else
fixed32_pack(value, out);
fixed32_pack(value >> 32, ((char *) out) + 4);
#endif
return 8;
}
/**
* Pack a boolean value as an integer and return the number of bytes written.
*
* \todo Perhaps on some platforms *out = !!value would be a better impl, b/c
* that is idiomatic C++ in some STL implementations.
*
* \param value
* Value to encode.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static inline size_t
boolean_pack(protobuf_c_boolean value, uint8_t *out)
{
*out = value ? TRUE : FALSE;
return 1;
}
/**
* Pack a NUL-terminated C string and return the number of bytes written. The
* output includes a length delimiter.
*
* The NULL pointer is treated as an empty string. This isn't really necessary,
* but it allows people to leave required strings blank. (See Issue #13 in the
* bug tracker for a little more explanation).
*
* \param str
* String to encode.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static inline size_t
string_pack(const char *str, uint8_t *out)
{
if (str == NULL) {
out[0] = 0;
return 1;
} else {
size_t len = strlen(str);
size_t rv = uint32_pack(len, out);
memcpy(out + rv, str, len);
return rv + len;
}
}
/**
* Pack a ProtobufCBinaryData and return the number of bytes written. The output
* includes a length delimiter.
*
* \param bd
* ProtobufCBinaryData to encode.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static inline size_t
binary_data_pack(const ProtobufCBinaryData *bd, uint8_t *out)
{
size_t len = bd->len;
size_t rv = uint32_pack(len, out);
memcpy(out + rv, bd->data, len);
return rv + len;
}
/**
* Pack a ProtobufCMessage and return the number of bytes written. The output
* includes a length delimiter.
*
* \param message
* ProtobufCMessage object to pack.
* \param[out] out
* Packed message.
* \return
* Number of bytes written to `out`.
*/
static inline size_t
prefixed_message_pack(const ProtobufCMessage *message, uint8_t *out)
{
if (message == NULL) {
out[0] = 0;
return 1;
} else {
size_t rv = protobuf_c_message_pack(message, out + 1);
uint32_t rv_packed_size = uint32_size(rv);
if (rv_packed_size != 1)
memmove(out + rv_packed_size, out + 1, rv);
return uint32_pack(rv, out) + rv;
}
}
/**
* Pack a field tag.
*
* Wire-type will be added in required_field_pack().
*
* \todo Just call uint64_pack on 64-bit platforms.
*
* \param id
* Tag value to encode.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static size_t
tag_pack(uint32_t id, uint8_t *out)
{
if (id < (1UL << (32 - 3)))
return uint32_pack(id << 3, out);
else
return uint64_pack(((uint64_t) id) << 3, out);
}
/**
* Pack a required field and return the number of bytes written.
*
* \param field
* Field descriptor.
* \param member
* The field member.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static size_t
required_field_pack(const ProtobufCFieldDescriptor *field,
const void *member, uint8_t *out)
{
size_t rv = tag_pack(field->id, out);
switch (field->type) {
case PROTOBUF_C_TYPE_SINT32:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + sint32_pack(*(const int32_t *) member, out + rv);
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + int32_pack(*(const int32_t *) member, out + rv);
case PROTOBUF_C_TYPE_UINT32:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + uint32_pack(*(const uint32_t *) member, out + rv);
case PROTOBUF_C_TYPE_SINT64:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + sint64_pack(*(const int64_t *) member, out + rv);
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + uint64_pack(*(const uint64_t *) member, out + rv);
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
out[0] |= PROTOBUF_C_WIRE_TYPE_32BIT;
return rv + fixed32_pack(*(const uint32_t *) member, out + rv);
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
out[0] |= PROTOBUF_C_WIRE_TYPE_64BIT;
return rv + fixed64_pack(*(const uint64_t *) member, out + rv);
case PROTOBUF_C_TYPE_BOOL:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + boolean_pack(*(const protobuf_c_boolean *) member, out + rv);
case PROTOBUF_C_TYPE_STRING:
out[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
return rv + string_pack(*(char *const *) member, out + rv);
case PROTOBUF_C_TYPE_BYTES:
out[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
return rv + binary_data_pack((const ProtobufCBinaryData *) member, out + rv);
case PROTOBUF_C_TYPE_MESSAGE:
out[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
return rv + prefixed_message_pack(*(ProtobufCMessage * const *) member, out + rv);
}
PROTOBUF_C__ASSERT_NOT_REACHED();
return 0;
}
/**
* Pack a oneof field and return the number of bytes written. Only packs the
* field that is selected by the case enum.
*
* \param field
* Field descriptor.
* \param oneof_case
* Enum value that selects the field in the oneof.
* \param member
* The field member.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static size_t
oneof_field_pack(const ProtobufCFieldDescriptor *field,
uint32_t oneof_case,
const void *member, uint8_t *out)
{
if (oneof_case != field->id) {
return 0;
}
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING)
{
const void *ptr = *(const void * const *) member;
if (ptr == NULL || ptr == field->default_value)
return 0;
}
return required_field_pack(field, member, out);
}
/**
* Pack an optional field and return the number of bytes written.
*
* \param field
* Field descriptor.
* \param has
* Whether the field is set.
* \param member
* The field member.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static size_t
optional_field_pack(const ProtobufCFieldDescriptor *field,
const protobuf_c_boolean has,
const void *member, uint8_t *out)
{
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING)
{
const void *ptr = *(const void * const *) member;
if (ptr == NULL || ptr == field->default_value)
return 0;
} else {
if (!has)
return 0;
}
return required_field_pack(field, member, out);
}
/**
* Pack an unlabeled field and return the number of bytes written.
*
* \param field
* Field descriptor.
* \param member
* The field member.
* \param[out] out
* Packed value.
* \return
* Number of bytes written to `out`.
*/
static size_t
unlabeled_field_pack(const ProtobufCFieldDescriptor *field,
const void *member, uint8_t *out)
{
if (field_is_zeroish(field, member))
return 0;
return required_field_pack(field, member, out);
}
/**
* Given a field type, return the in-memory size.
*
* \todo Implement as a table lookup.
*
* \param type
* Field type.
* \return
* Size of the field.
*/
static inline size_t
sizeof_elt_in_repeated_array(ProtobufCType type)
{
switch (type) {
case PROTOBUF_C_TYPE_SINT32:
case PROTOBUF_C_TYPE_INT32:
case PROTOBUF_C_TYPE_UINT32:
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
case PROTOBUF_C_TYPE_ENUM:
return 4;
case PROTOBUF_C_TYPE_SINT64:
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
return 8;
case PROTOBUF_C_TYPE_BOOL:
return sizeof(protobuf_c_boolean);
case PROTOBUF_C_TYPE_STRING:
case PROTOBUF_C_TYPE_MESSAGE:
return sizeof(void *);
case PROTOBUF_C_TYPE_BYTES:
return sizeof(ProtobufCBinaryData);
}
PROTOBUF_C__ASSERT_NOT_REACHED();
return 0;
}
/**
* Pack an array of 32-bit quantities.
*
* \param[out] out
* Destination.
* \param[in] in
* Source.
* \param[in] n
* Number of elements in the source array.
*/
static void
copy_to_little_endian_32(void *out, const void *in, const unsigned n)
{
#if !defined(WORDS_BIGENDIAN)
memcpy(out, in, n * 4);
#else
unsigned i;
const uint32_t *ini = in;
for (i = 0; i < n; i++)
fixed32_pack(ini[i], (uint32_t *) out + i);
#endif
}
/**
* Pack an array of 64-bit quantities.
*
* \param[out] out
* Destination.
* \param[in] in
* Source.
* \param[in] n
* Number of elements in the source array.
*/
static void
copy_to_little_endian_64(void *out, const void *in, const unsigned n)
{
#if !defined(WORDS_BIGENDIAN)
memcpy(out, in, n * 8);
#else
unsigned i;
const uint64_t *ini = in;
for (i = 0; i < n; i++)
fixed64_pack(ini[i], (uint64_t *) out + i);
#endif
}
/**
* Get the minimum number of bytes required to pack a field value of a
* particular type.
*
* \param type
* Field type.
* \return
* Number of bytes.
*/
static unsigned
get_type_min_size(ProtobufCType type)
{
if (type == PROTOBUF_C_TYPE_SFIXED32 ||
type == PROTOBUF_C_TYPE_FIXED32 ||
type == PROTOBUF_C_TYPE_FLOAT)
{
return 4;
}
if (type == PROTOBUF_C_TYPE_SFIXED64 ||
type == PROTOBUF_C_TYPE_FIXED64 ||
type == PROTOBUF_C_TYPE_DOUBLE)
{
return 8;
}
return 1;
}
/**
* Packs the elements of a repeated field and returns the serialised field and
* its length.
*
* \param field
* Field descriptor.
* \param count
* Number of elements in the repeated field array.
* \param member
* Pointer to the elements for this repeated field.
* \param[out] out
* Serialised representation of the repeated field.
* \return
* Number of bytes serialised to `out`.
*/
static size_t
repeated_field_pack(const ProtobufCFieldDescriptor *field,
size_t count, const void *member, uint8_t *out)
{
void *array = *(void * const *) member;
unsigned i;
if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED)) {
unsigned header_len;
unsigned len_start;
unsigned min_length;
unsigned payload_len;
unsigned length_size_min;
unsigned actual_length_size;
uint8_t *payload_at;
if (count == 0)
return 0;
header_len = tag_pack(field->id, out);
out[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
len_start = header_len;
min_length = get_type_min_size(field->type) * count;
length_size_min = uint32_size(min_length);
header_len += length_size_min;
payload_at = out + header_len;
switch (field->type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
copy_to_little_endian_32(payload_at, array, count);
payload_at += count * 4;
break;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
copy_to_little_endian_64(payload_at, array, count);
payload_at += count * 8;
break;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32: {
const int32_t *arr = (const int32_t *) array;
for (i = 0; i < count; i++)
payload_at += int32_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_SINT32: {
const int32_t *arr = (const int32_t *) array;
for (i = 0; i < count; i++)
payload_at += sint32_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_SINT64: {
const int64_t *arr = (const int64_t *) array;
for (i = 0; i < count; i++)
payload_at += sint64_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_UINT32: {
const uint32_t *arr = (const uint32_t *) array;
for (i = 0; i < count; i++)
payload_at += uint32_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64: {
const uint64_t *arr = (const uint64_t *) array;
for (i = 0; i < count; i++)
payload_at += uint64_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_BOOL: {
const protobuf_c_boolean *arr = (const protobuf_c_boolean *) array;
for (i = 0; i < count; i++)
payload_at += boolean_pack(arr[i], payload_at);
break;
}
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
payload_len = payload_at - (out + header_len);
actual_length_size = uint32_size(payload_len);
if (length_size_min != actual_length_size) {
assert(actual_length_size == length_size_min + 1);
memmove(out + header_len + 1, out + header_len,
payload_len);
header_len++;
}
uint32_pack(payload_len, out + len_start);
return header_len + payload_len;
} else {
/* not "packed" cased */
/* CONSIDER: optimize this case a bit (by putting the loop inside the switch) */
size_t rv = 0;
unsigned siz = sizeof_elt_in_repeated_array(field->type);
for (i = 0; i < count; i++) {
rv += required_field_pack(field, array, out + rv);
array = (char *)array + siz;
}
return rv;
}
}
static size_t
unknown_field_pack(const ProtobufCMessageUnknownField *field, uint8_t *out)
{
size_t rv = tag_pack(field->tag, out);
out[0] |= field->wire_type;
memcpy(out + rv, field->data, field->len);
return rv + field->len;
}
/**@}*/
size_t
protobuf_c_message_pack(const ProtobufCMessage *message, uint8_t *out)
{
unsigned i;
size_t rv = 0;
ASSERT_IS_MESSAGE(message);
for (i = 0; i < message->descriptor->n_fields; i++) {
const ProtobufCFieldDescriptor *field =
message->descriptor->fields + i;
const void *member = ((const char *) message) + field->offset;
/*
* It doesn't hurt to compute qmember (a pointer to the
* quantifier field of the structure), but the pointer is only
* valid if the field is:
* - a repeated field, or
* - a field that is part of a oneof
* - an optional field that isn't a pointer type
* (Meaning: not a message or a string).
*/
const void *qmember =
((const char *) message) + field->quantifier_offset;
if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
rv += required_field_pack(field, member, out + rv);
} else if ((field->label == PROTOBUF_C_LABEL_OPTIONAL ||
field->label == PROTOBUF_C_LABEL_NONE) &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF))) {
rv += oneof_field_pack(
field,
*(const uint32_t *) qmember,
member,
out + rv
);
} else if (field->label == PROTOBUF_C_LABEL_OPTIONAL) {
rv += optional_field_pack(
field,
*(const protobuf_c_boolean *) qmember,
member,
out + rv
);
} else if (field->label == PROTOBUF_C_LABEL_NONE) {
rv += unlabeled_field_pack(field, member, out + rv);
} else {
rv += repeated_field_pack(field, *(const size_t *) qmember,
member, out + rv);
}
}
for (i = 0; i < message->n_unknown_fields; i++)
rv += unknown_field_pack(&message->unknown_fields[i], out + rv);
return rv;
}
/**
* \defgroup packbuf protobuf_c_message_pack_to_buffer() implementation
*
* Routines mainly used by protobuf_c_message_pack_to_buffer().
*
* \ingroup internal
* @{
*/
/**
* Pack a required field to a virtual buffer.
*
* \param field
* Field descriptor.
* \param member
* The element to be packed.
* \param[out] buffer
* Virtual buffer to append data to.
* \return
* Number of bytes packed.
*/
static size_t
required_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
const void *member, ProtobufCBuffer *buffer)
{
size_t rv;
uint8_t scratch[MAX_UINT64_ENCODED_SIZE * 2];
rv = tag_pack(field->id, scratch);
switch (field->type) {
case PROTOBUF_C_TYPE_SINT32:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += sint32_pack(*(const int32_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += int32_pack(*(const int32_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_UINT32:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += uint32_pack(*(const uint32_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_SINT64:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += sint64_pack(*(const int64_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += uint64_pack(*(const uint64_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_32BIT;
rv += fixed32_pack(*(const uint32_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_64BIT;
rv += fixed64_pack(*(const uint64_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_BOOL:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += boolean_pack(*(const protobuf_c_boolean *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_STRING: {
const char *str = *(char *const *) member;
size_t sublen = str ? strlen(str) : 0;
scratch[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
rv += uint32_pack(sublen, scratch + rv);
buffer->append(buffer, rv, scratch);
buffer->append(buffer, sublen, (const uint8_t *) str);
rv += sublen;
break;
}
case PROTOBUF_C_TYPE_BYTES: {
const ProtobufCBinaryData *bd = ((const ProtobufCBinaryData *) member);
size_t sublen = bd->len;
scratch[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
rv += uint32_pack(sublen, scratch + rv);
buffer->append(buffer, rv, scratch);
buffer->append(buffer, sublen, bd->data);
rv += sublen;
break;
}
case PROTOBUF_C_TYPE_MESSAGE: {
const ProtobufCMessage *msg = *(ProtobufCMessage * const *) member;
scratch[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
if (msg == NULL) {
rv += uint32_pack(0, scratch + rv);
buffer->append(buffer, rv, scratch);
} else {
size_t sublen = protobuf_c_message_get_packed_size(msg);
rv += uint32_pack(sublen, scratch + rv);
buffer->append(buffer, rv, scratch);
protobuf_c_message_pack_to_buffer(msg, buffer);
rv += sublen;
}
break;
}
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
return rv;
}
/**
* Pack a oneof field to a buffer. Only packs the field that is selected by the case enum.
*
* \param field
* Field descriptor.
* \param oneof_case
* Enum value that selects the field in the oneof.
* \param member
* The element to be packed.
* \param[out] buffer
* Virtual buffer to append data to.
* \return
* Number of bytes serialised to `buffer`.
*/
static size_t
oneof_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
uint32_t oneof_case,
const void *member, ProtobufCBuffer *buffer)
{
if (oneof_case != field->id) {
return 0;
}
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING)
{
const void *ptr = *(const void *const *) member;
if (ptr == NULL || ptr == field->default_value)
return 0;
}
return required_field_pack_to_buffer(field, member, buffer);
}
/**
* Pack an optional field to a buffer.
*
* \param field
* Field descriptor.
* \param has
* Whether the field is set.
* \param member
* The element to be packed.
* \param[out] buffer
* Virtual buffer to append data to.
* \return
* Number of bytes serialised to `buffer`.
*/
static size_t
optional_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
const protobuf_c_boolean has,
const void *member, ProtobufCBuffer *buffer)
{
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING)
{
const void *ptr = *(const void *const *) member;
if (ptr == NULL || ptr == field->default_value)
return 0;
} else {
if (!has)
return 0;
}
return required_field_pack_to_buffer(field, member, buffer);
}
/**
* Pack an unlabeled field to a buffer.
*
* \param field
* Field descriptor.
* \param member
* The element to be packed.
* \param[out] buffer
* Virtual buffer to append data to.
* \return
* Number of bytes serialised to `buffer`.
*/
static size_t
unlabeled_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
const void *member, ProtobufCBuffer *buffer)
{
if (field_is_zeroish(field, member))
return 0;
return required_field_pack_to_buffer(field, member, buffer);
}
/**
* Get the packed size of an array of same field type.
*
* \param field
* Field descriptor.
* \param count
* Number of elements of this type.
* \param array
* The elements to get the size of.
* \return
* Number of bytes required.
*/
static size_t
get_packed_payload_length(const ProtobufCFieldDescriptor *field,
unsigned count, const void *array)
{
unsigned rv = 0;
unsigned i;
switch (field->type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
return count * 4;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
return count * 8;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32: {
const int32_t *arr = (const int32_t *) array;
for (i = 0; i < count; i++)
rv += int32_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_SINT32: {
const int32_t *arr = (const int32_t *) array;
for (i = 0; i < count; i++)
rv += sint32_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_UINT32: {
const uint32_t *arr = (const uint32_t *) array;
for (i = 0; i < count; i++)
rv += uint32_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_SINT64: {
const int64_t *arr = (const int64_t *) array;
for (i = 0; i < count; i++)
rv += sint64_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64: {
const uint64_t *arr = (const uint64_t *) array;
for (i = 0; i < count; i++)
rv += uint64_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_BOOL:
return count;
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
return rv;
}
/**
* Pack an array of same field type to a virtual buffer.
*
* \param field
* Field descriptor.
* \param count
* Number of elements of this type.
* \param array
* The elements to get the size of.
* \param[out] buffer
* Virtual buffer to append data to.
* \return
* Number of bytes packed.
*/
static size_t
pack_buffer_packed_payload(const ProtobufCFieldDescriptor *field,
unsigned count, const void *array,
ProtobufCBuffer *buffer)
{
uint8_t scratch[16];
size_t rv = 0;
unsigned i;
switch (field->type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
#if !defined(WORDS_BIGENDIAN)
rv = count * 4;
goto no_packing_needed;
#else
for (i = 0; i < count; i++) {
unsigned len = fixed32_pack(((uint32_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
#endif
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
#if !defined(WORDS_BIGENDIAN)
rv = count * 8;
goto no_packing_needed;
#else
for (i = 0; i < count; i++) {
unsigned len = fixed64_pack(((uint64_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
#endif
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
for (i = 0; i < count; i++) {
unsigned len = int32_pack(((int32_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_SINT32:
for (i = 0; i < count; i++) {
unsigned len = sint32_pack(((int32_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_UINT32:
for (i = 0; i < count; i++) {
unsigned len = uint32_pack(((uint32_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_SINT64:
for (i = 0; i < count; i++) {
unsigned len = sint64_pack(((int64_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
for (i = 0; i < count; i++) {
unsigned len = uint64_pack(((uint64_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_BOOL:
for (i = 0; i < count; i++) {
unsigned len = boolean_pack(((protobuf_c_boolean *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
return count;
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
return rv;
#if !defined(WORDS_BIGENDIAN)
no_packing_needed:
buffer->append(buffer, rv, array);
return rv;
#endif
}
static size_t
repeated_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
unsigned count, const void *member,
ProtobufCBuffer *buffer)
{
char *array = *(char * const *) member;
if (count == 0)
return 0;
if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED)) {
uint8_t scratch[MAX_UINT64_ENCODED_SIZE * 2];
size_t rv = tag_pack(field->id, scratch);
size_t payload_len = get_packed_payload_length(field, count, array);
size_t tmp;
scratch[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
rv += uint32_pack(payload_len, scratch + rv);
buffer->append(buffer, rv, scratch);
tmp = pack_buffer_packed_payload(field, count, array, buffer);
assert(tmp == payload_len);
return rv + payload_len;
} else {
size_t siz;
unsigned i;
/* CONSIDER: optimize this case a bit (by putting the loop inside the switch) */
unsigned rv = 0;
siz = sizeof_elt_in_repeated_array(field->type);
for (i = 0; i < count; i++) {
rv += required_field_pack_to_buffer(field, array, buffer);
array += siz;
}
return rv;
}
}
static size_t
unknown_field_pack_to_buffer(const ProtobufCMessageUnknownField *field,
ProtobufCBuffer *buffer)
{
uint8_t header[MAX_UINT64_ENCODED_SIZE];
size_t rv = tag_pack(field->tag, header);
header[0] |= field->wire_type;
buffer->append(buffer, rv, header);
buffer->append(buffer, field->len, field->data);
return rv + field->len;
}
/**@}*/
size_t
protobuf_c_message_pack_to_buffer(const ProtobufCMessage *message,
ProtobufCBuffer *buffer)
{
unsigned i;
size_t rv = 0;
ASSERT_IS_MESSAGE(message);
for (i = 0; i < message->descriptor->n_fields; i++) {
const ProtobufCFieldDescriptor *field =
message->descriptor->fields + i;
const void *member =
((const char *) message) + field->offset;
const void *qmember =
((const char *) message) + field->quantifier_offset;
if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
rv += required_field_pack_to_buffer(field, member, buffer);
} else if ((field->label == PROTOBUF_C_LABEL_OPTIONAL ||
field->label == PROTOBUF_C_LABEL_NONE) &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF))) {
rv += oneof_field_pack_to_buffer(
field,
*(const uint32_t *) qmember,
member,
buffer
);
} else if (field->label == PROTOBUF_C_LABEL_OPTIONAL) {
rv += optional_field_pack_to_buffer(
field,
*(const protobuf_c_boolean *) qmember,
member,
buffer
);
} else if (field->label == PROTOBUF_C_LABEL_NONE) {
rv += unlabeled_field_pack_to_buffer(
field,
member,
buffer
);
} else {
rv += repeated_field_pack_to_buffer(
field,
*(const size_t *) qmember,
member,
buffer
);
}
}
for (i = 0; i < message->n_unknown_fields; i++)
rv += unknown_field_pack_to_buffer(&message->unknown_fields[i], buffer);
return rv;
}
/**
* \defgroup unpack unpacking implementation
*
* Routines mainly used by the unpacking functions.
*
* \ingroup internal
* @{
*/
static inline int
int_range_lookup(unsigned n_ranges, const ProtobufCIntRange *ranges, int value)
{
unsigned n;
unsigned start;
if (n_ranges == 0)
return -1;
start = 0;
n = n_ranges;
while (n > 1) {
unsigned mid = start + n / 2;
if (value < ranges[mid].start_value) {
n = mid - start;
} else if (value >= ranges[mid].start_value +
(int) (ranges[mid + 1].orig_index -
ranges[mid].orig_index))
{
unsigned new_start = mid + 1;
n = start + n - new_start;
start = new_start;
} else
return (value - ranges[mid].start_value) +
ranges[mid].orig_index;
}
if (n > 0) {
unsigned start_orig_index = ranges[start].orig_index;
unsigned range_size =
ranges[start + 1].orig_index - start_orig_index;
if (ranges[start].start_value <= value &&
value < (int) (ranges[start].start_value + range_size))
{
return (value - ranges[start].start_value) +
start_orig_index;
}
}
return -1;
}
static size_t
parse_tag_and_wiretype(size_t len,
const uint8_t *data,
uint32_t *tag_out,
uint8_t *wiretype_out)
{
unsigned max_rv = len > 5 ? 5 : len;
uint32_t tag = (data[0] & 0x7f) >> 3;
unsigned shift = 4;
unsigned rv;
/* 0 is not a valid tag value */
if ((data[0] & 0xf8) == 0) {
return 0;
}
*wiretype_out = data[0] & 7;
if ((data[0] & 0x80) == 0) {
*tag_out = tag;
return 1;
}
for (rv = 1; rv < max_rv; rv++) {
if (data[rv] & 0x80) {
tag |= (data[rv] & 0x7f) << shift;
shift += 7;
} else {
tag |= data[rv] << shift;
*tag_out = tag;
return rv + 1;
}
}
return 0; /* error: bad header */
}
/* sizeof(ScannedMember) must be <= (1UL<<BOUND_SIZEOF_SCANNED_MEMBER_LOG2) */
#define BOUND_SIZEOF_SCANNED_MEMBER_LOG2 5
typedef struct ScannedMember ScannedMember;
/** Field as it's being read. */
struct ScannedMember {
uint32_t tag; /**< Field tag. */
uint8_t wire_type; /**< Field type. */
uint8_t length_prefix_len; /**< Prefix length. */
const ProtobufCFieldDescriptor *field; /**< Field descriptor. */
size_t len; /**< Field length. */
const uint8_t *data; /**< Pointer to field data. */
};
static inline size_t
scan_length_prefixed_data(size_t len, const uint8_t *data,
size_t *prefix_len_out)
{
unsigned hdr_max = len < 5 ? len : 5;
unsigned hdr_len;
size_t val = 0;
unsigned i;
unsigned shift = 0;
for (i = 0; i < hdr_max; i++) {
val |= ((size_t)data[i] & 0x7f) << shift;
shift += 7;
if ((data[i] & 0x80) == 0)
break;
}
if (i == hdr_max) {
PROTOBUF_C_UNPACK_ERROR("error parsing length for length-prefixed data");
return 0;
}
hdr_len = i + 1;
*prefix_len_out = hdr_len;
if (val > INT_MAX) {
// Protobuf messages should always be less than 2 GiB in size.
// We also want to return early here so that hdr_len + val does
// not overflow on 32-bit systems.
PROTOBUF_C_UNPACK_ERROR("length prefix of %lu is too large",
(unsigned long int)val);
return 0;
}
if (hdr_len + val > len) {
PROTOBUF_C_UNPACK_ERROR("data too short after length-prefix of %lu",
(unsigned long int)val);
return 0;
}
return hdr_len + val;
}
static size_t
max_b128_numbers(size_t len, const uint8_t *data)
{
size_t rv = 0;
while (len--)
if ((*data++ & 0x80) == 0)
++rv;
return rv;
}
/**@}*/
/**
* Merge earlier message into a latter message.
*
* For numeric types and strings, if the same value appears multiple
* times, the parser accepts the last value it sees. For embedded
* message fields, the parser merges multiple instances of the same
* field. That is, all singular scalar fields in the latter instance
* replace those in the former, singular embedded messages are merged,
* and repeated fields are concatenated.
*
* The earlier message should be freed after calling this function, as
* some of its fields may have been reused and changed to their default
* values during the merge.
*/
static protobuf_c_boolean
merge_messages(ProtobufCMessage *earlier_msg,
ProtobufCMessage *latter_msg,
ProtobufCAllocator *allocator)
{
unsigned i;
const ProtobufCFieldDescriptor *fields =
latter_msg->descriptor->fields;
for (i = 0; i < latter_msg->descriptor->n_fields; i++) {
if (fields[i].label == PROTOBUF_C_LABEL_REPEATED) {
size_t *n_earlier =
STRUCT_MEMBER_PTR(size_t, earlier_msg,
fields[i].quantifier_offset);
uint8_t **p_earlier =
STRUCT_MEMBER_PTR(uint8_t *, earlier_msg,
fields[i].offset);
size_t *n_latter =
STRUCT_MEMBER_PTR(size_t, latter_msg,
fields[i].quantifier_offset);
uint8_t **p_latter =
STRUCT_MEMBER_PTR(uint8_t *, latter_msg,
fields[i].offset);
if (*n_earlier > 0) {
if (*n_latter > 0) {
/* Concatenate the repeated field */
size_t el_size =
sizeof_elt_in_repeated_array(fields[i].type);
uint8_t *new_field;
new_field = do_alloc(allocator,
(*n_earlier + *n_latter) * el_size);
if (!new_field)
return FALSE;
memcpy(new_field, *p_earlier,
*n_earlier * el_size);
memcpy(new_field +
*n_earlier * el_size,
*p_latter,
*n_latter * el_size);
do_free(allocator, *p_latter);
do_free(allocator, *p_earlier);
*p_latter = new_field;
*n_latter = *n_earlier + *n_latter;
} else {
/* Zero copy the repeated field from the earlier message */
*n_latter = *n_earlier;
*p_latter = *p_earlier;
}
/* Make sure the field does not get double freed */
*n_earlier = 0;
*p_earlier = 0;
}
} else if (fields[i].label == PROTOBUF_C_LABEL_OPTIONAL ||
fields[i].label == PROTOBUF_C_LABEL_NONE) {
const ProtobufCFieldDescriptor *field;
uint32_t *earlier_case_p = STRUCT_MEMBER_PTR(uint32_t,
earlier_msg,
fields[i].
quantifier_offset);
uint32_t *latter_case_p = STRUCT_MEMBER_PTR(uint32_t,
latter_msg,
fields[i].
quantifier_offset);
protobuf_c_boolean need_to_merge = FALSE;
void *earlier_elem;
void *latter_elem;
const void *def_val;
if (fields[i].flags & PROTOBUF_C_FIELD_FLAG_ONEOF) {
if (*latter_case_p == 0) {
/* lookup correct oneof field */
int field_index =
int_range_lookup(
latter_msg->descriptor
->n_field_ranges,
latter_msg->descriptor
->field_ranges,
*earlier_case_p);
if (field_index < 0)
return FALSE;
field = latter_msg->descriptor->fields +
field_index;
} else {
/* Oneof is present in the latter message, move on */
continue;
}
} else {
field = &fields[i];
}
earlier_elem = STRUCT_MEMBER_P(earlier_msg, field->offset);
latter_elem = STRUCT_MEMBER_P(latter_msg, field->offset);
def_val = field->default_value;
switch (field->type) {
case PROTOBUF_C_TYPE_MESSAGE: {
ProtobufCMessage *em = *(ProtobufCMessage **) earlier_elem;
ProtobufCMessage *lm = *(ProtobufCMessage **) latter_elem;
if (em != NULL) {
if (lm != NULL) {
if (!merge_messages(em, lm, allocator))
return FALSE;
/* Already merged */
need_to_merge = FALSE;
} else {
/* Zero copy the message */
need_to_merge = TRUE;
}
}
break;
}
case PROTOBUF_C_TYPE_BYTES: {
uint8_t *e_data =
((ProtobufCBinaryData *) earlier_elem)->data;
uint8_t *l_data =
((ProtobufCBinaryData *) latter_elem)->data;
const ProtobufCBinaryData *d_bd =
(ProtobufCBinaryData *) def_val;
need_to_merge =
(e_data != NULL &&
(d_bd == NULL ||
e_data != d_bd->data)) &&
(l_data == NULL ||
(d_bd != NULL &&
l_data == d_bd->data));
break;
}
case PROTOBUF_C_TYPE_STRING: {
char *e_str = *(char **) earlier_elem;
char *l_str = *(char **) latter_elem;
const char *d_str = def_val;
need_to_merge = e_str != d_str && l_str == d_str;
break;
}
default: {
/* Could be has field or case enum, the logic is
* equivalent, since 0 (FALSE) means not set for
* oneof */
need_to_merge = (*earlier_case_p != 0) &&
(*latter_case_p == 0);
break;
}
}
if (need_to_merge) {
size_t el_size =
sizeof_elt_in_repeated_array(field->type);
memcpy(latter_elem, earlier_elem, el_size);
/*
* Reset the element from the old message to 0
* to make sure earlier message deallocation
* doesn't corrupt zero-copied data in the new
* message, earlier message will be freed after
* this function is called anyway
*/
memset(earlier_elem, 0, el_size);
if (field->quantifier_offset != 0) {
/* Set the has field or the case enum,
* if applicable */
*latter_case_p = *earlier_case_p;
*earlier_case_p = 0;
}
}
}
}
return TRUE;
}
/**
* Count packed elements.
*
* Given a raw slab of packed-repeated values, determine the number of
* elements. This function detects certain kinds of errors but not
* others; the remaining error checking is done by
* parse_packed_repeated_member().
*/
static protobuf_c_boolean
count_packed_elements(ProtobufCType type,
size_t len, const uint8_t *data, size_t *count_out)
{
switch (type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
if (len % 4 != 0) {
PROTOBUF_C_UNPACK_ERROR("length must be a multiple of 4 for fixed-length 32-bit types");
return FALSE;
}
*count_out = len / 4;
return TRUE;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
if (len % 8 != 0) {
PROTOBUF_C_UNPACK_ERROR("length must be a multiple of 8 for fixed-length 64-bit types");
return FALSE;
}
*count_out = len / 8;
return TRUE;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
case PROTOBUF_C_TYPE_SINT32:
case PROTOBUF_C_TYPE_UINT32:
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_SINT64:
case PROTOBUF_C_TYPE_UINT64:
*count_out = max_b128_numbers(len, data);
return TRUE;
case PROTOBUF_C_TYPE_BOOL:
*count_out = len;
return TRUE;
case PROTOBUF_C_TYPE_STRING:
case PROTOBUF_C_TYPE_BYTES:
case PROTOBUF_C_TYPE_MESSAGE:
default:
PROTOBUF_C_UNPACK_ERROR("bad protobuf-c type %u for packed-repeated", type);
return FALSE;
}
}
static inline uint32_t
parse_uint32(unsigned len, const uint8_t *data)
{
uint32_t rv = data[0] & 0x7f;
if (len > 1) {
rv |= ((uint32_t) (data[1] & 0x7f) << 7);
if (len > 2) {
rv |= ((uint32_t) (data[2] & 0x7f) << 14);
if (len > 3) {
rv |= ((uint32_t) (data[3] & 0x7f) << 21);
if (len > 4)
rv |= ((uint32_t) (data[4]) << 28);
}
}
}
return rv;
}
static inline uint32_t
parse_int32(unsigned len, const uint8_t *data)
{
return parse_uint32(len, data);
}
static inline int32_t
unzigzag32(uint32_t v)
{
// Note: Using unsigned types prevents undefined behavior
return (int32_t)((v >> 1) ^ (~(v & 1) + 1));
}
static inline uint32_t
parse_fixed_uint32(const uint8_t *data)
{
#if !defined(WORDS_BIGENDIAN)
uint32_t t;
memcpy(&t, data, 4);
return t;
#else
return data[0] |
((uint32_t) (data[1]) << 8) |
((uint32_t) (data[2]) << 16) |
((uint32_t) (data[3]) << 24);
#endif
}
static uint64_t
parse_uint64(unsigned len, const uint8_t *data)
{
unsigned shift, i;
uint64_t rv;
if (len < 5)
return parse_uint32(len, data);
rv = ((uint64_t) (data[0] & 0x7f)) |
((uint64_t) (data[1] & 0x7f) << 7) |
((uint64_t) (data[2] & 0x7f) << 14) |
((uint64_t) (data[3] & 0x7f) << 21);
shift = 28;
for (i = 4; i < len; i++) {
rv |= (((uint64_t) (data[i] & 0x7f)) << shift);
shift += 7;
}
return rv;
}
static inline int64_t
unzigzag64(uint64_t v)
{
// Note: Using unsigned types prevents undefined behavior
return (int64_t)((v >> 1) ^ (~(v & 1) + 1));
}
static inline uint64_t
parse_fixed_uint64(const uint8_t *data)
{
#if !defined(WORDS_BIGENDIAN)
uint64_t t;
memcpy(&t, data, 8);
return t;
#else
return (uint64_t) parse_fixed_uint32(data) |
(((uint64_t) parse_fixed_uint32(data + 4)) << 32);
#endif
}
static protobuf_c_boolean
parse_boolean(unsigned len, const uint8_t *data)
{
unsigned i;
for (i = 0; i < len; i++)
if (data[i] & 0x7f)
return TRUE;
return FALSE;
}
static protobuf_c_boolean
parse_required_member(ScannedMember *scanned_member,
void *member,
ProtobufCAllocator *allocator,
protobuf_c_boolean maybe_clear)
{
unsigned len = scanned_member->len;
const uint8_t *data = scanned_member->data;
uint8_t wire_type = scanned_member->wire_type;
switch (scanned_member->field->type) {
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT)
return FALSE;
*(int32_t *) member = parse_int32(len, data);
return TRUE;
case PROTOBUF_C_TYPE_UINT32:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT)
return FALSE;
*(uint32_t *) member = parse_uint32(len, data);
return TRUE;
case PROTOBUF_C_TYPE_SINT32:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT)
return FALSE;
*(int32_t *) member = unzigzag32(parse_uint32(len, data));
return TRUE;
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
if (wire_type != PROTOBUF_C_WIRE_TYPE_32BIT)
return FALSE;
*(uint32_t *) member = parse_fixed_uint32(data);
return TRUE;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT)
return FALSE;
*(uint64_t *) member = parse_uint64(len, data);
return TRUE;
case PROTOBUF_C_TYPE_SINT64:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT)
return FALSE;
*(int64_t *) member = unzigzag64(parse_uint64(len, data));
return TRUE;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
if (wire_type != PROTOBUF_C_WIRE_TYPE_64BIT)
return FALSE;
*(uint64_t *) member = parse_fixed_uint64(data);
return TRUE;
case PROTOBUF_C_TYPE_BOOL:
*(protobuf_c_boolean *) member = parse_boolean(len, data);
return TRUE;
case PROTOBUF_C_TYPE_STRING: {
char **pstr = member;
unsigned pref_len = scanned_member->length_prefix_len;
if (wire_type != PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED)
return FALSE;
if (maybe_clear && *pstr != NULL) {
const char *def = scanned_member->field->default_value;
if (*pstr != NULL && *pstr != def)
do_free(allocator, *pstr);
}
*pstr = do_alloc(allocator, len - pref_len + 1);
if (*pstr == NULL)
return FALSE;
memcpy(*pstr, data + pref_len, len - pref_len);
(*pstr)[len - pref_len] = 0;
return TRUE;
}
case PROTOBUF_C_TYPE_BYTES: {
ProtobufCBinaryData *bd = member;
const ProtobufCBinaryData *def_bd;
unsigned pref_len = scanned_member->length_prefix_len;
if (wire_type != PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED)
return FALSE;
def_bd = scanned_member->field->default_value;
if (maybe_clear &&
bd->data != NULL &&
(def_bd == NULL || bd->data != def_bd->data))
{
do_free(allocator, bd->data);
}
if (len > pref_len) {
bd->data = do_alloc(allocator, len - pref_len);
if (bd->data == NULL)
return FALSE;
memcpy(bd->data, data + pref_len, len - pref_len);
} else {
bd->data = NULL;
}
bd->len = len - pref_len;
return TRUE;
}
case PROTOBUF_C_TYPE_MESSAGE: {
ProtobufCMessage **pmessage = member;
ProtobufCMessage *subm;
const ProtobufCMessage *def_mess;
protobuf_c_boolean merge_successful = TRUE;
unsigned pref_len = scanned_member->length_prefix_len;
if (wire_type != PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED)
return FALSE;
def_mess = scanned_member->field->default_value;
subm = protobuf_c_message_unpack(scanned_member->field->descriptor,
allocator,
len - pref_len,
data + pref_len);
if (maybe_clear &&
*pmessage != NULL &&
*pmessage != def_mess)
{
if (subm != NULL)
merge_successful = merge_messages(*pmessage, subm, allocator);
/* Delete the previous message */
protobuf_c_message_free_unpacked(*pmessage, allocator);
}
*pmessage = subm;
if (subm == NULL || !merge_successful)
return FALSE;
return TRUE;
}
}
return FALSE;
}
static protobuf_c_boolean
parse_oneof_member (ScannedMember *scanned_member,
void *member,
ProtobufCMessage *message,
ProtobufCAllocator *allocator)
{
uint32_t *oneof_case = STRUCT_MEMBER_PTR(uint32_t, message,
scanned_member->field->quantifier_offset);
/* If we have already parsed a member of this oneof, free it. */
if (*oneof_case != 0) {
const ProtobufCFieldDescriptor *old_field;
size_t el_size;
/* lookup field */
int field_index =
int_range_lookup(message->descriptor->n_field_ranges,
message->descriptor->field_ranges,
*oneof_case);
if (field_index < 0)
return FALSE;
old_field = message->descriptor->fields + field_index;
el_size = sizeof_elt_in_repeated_array(old_field->type);
switch (old_field->type) {
case PROTOBUF_C_TYPE_STRING: {
char **pstr = member;
const char *def = old_field->default_value;
if (*pstr != NULL && *pstr != def)
do_free(allocator, *pstr);
break;
}
case PROTOBUF_C_TYPE_BYTES: {
ProtobufCBinaryData *bd = member;
const ProtobufCBinaryData *def_bd = old_field->default_value;
if (bd->data != NULL &&
(def_bd == NULL || bd->data != def_bd->data))
{
do_free(allocator, bd->data);
}
break;
}
case PROTOBUF_C_TYPE_MESSAGE: {
ProtobufCMessage **pmessage = member;
const ProtobufCMessage *def_mess = old_field->default_value;
if (*pmessage != NULL && *pmessage != def_mess)
protobuf_c_message_free_unpacked(*pmessage, allocator);
break;
}
default:
break;
}
memset (member, 0, el_size);
}
if (!parse_required_member (scanned_member, member, allocator, TRUE))
return FALSE;
*oneof_case = scanned_member->tag;
return TRUE;
}
static protobuf_c_boolean
parse_optional_member(ScannedMember *scanned_member,
void *member,
ProtobufCMessage *message,
ProtobufCAllocator *allocator)
{
if (!parse_required_member(scanned_member, member, allocator, TRUE))
return FALSE;
if (scanned_member->field->quantifier_offset != 0)
STRUCT_MEMBER(protobuf_c_boolean,
message,
scanned_member->field->quantifier_offset) = TRUE;
return TRUE;
}
static protobuf_c_boolean
parse_repeated_member(ScannedMember *scanned_member,
void *member,
ProtobufCMessage *message,
ProtobufCAllocator *allocator)
{
const ProtobufCFieldDescriptor *field = scanned_member->field;
size_t *p_n = STRUCT_MEMBER_PTR(size_t, message, field->quantifier_offset);
size_t siz = sizeof_elt_in_repeated_array(field->type);
char *array = *(char **) member;
if (!parse_required_member(scanned_member, array + siz * (*p_n),
allocator, FALSE))
{
return FALSE;
}
*p_n += 1;
return TRUE;
}
static unsigned
scan_varint(unsigned len, const uint8_t *data)
{
unsigned i;
if (len > 10)
len = 10;
for (i = 0; i < len; i++)
if ((data[i] & 0x80) == 0)
break;
if (i == len)
return 0;
return i + 1;
}
static protobuf_c_boolean
parse_packed_repeated_member(ScannedMember *scanned_member,
void *member,
ProtobufCMessage *message)
{
const ProtobufCFieldDescriptor *field = scanned_member->field;
size_t *p_n = STRUCT_MEMBER_PTR(size_t, message, field->quantifier_offset);
size_t siz = sizeof_elt_in_repeated_array(field->type);
void *array = *(char **) member + siz * (*p_n);
const uint8_t *at = scanned_member->data + scanned_member->length_prefix_len;
size_t rem = scanned_member->len - scanned_member->length_prefix_len;
size_t count = 0;
#if defined(WORDS_BIGENDIAN)
unsigned i;
#endif
switch (field->type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
count = (scanned_member->len - scanned_member->length_prefix_len) / 4;
#if !defined(WORDS_BIGENDIAN)
goto no_unpacking_needed;
#else
for (i = 0; i < count; i++) {
((uint32_t *) array)[i] = parse_fixed_uint32(at);
at += 4;
}
break;
#endif
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
count = (scanned_member->len - scanned_member->length_prefix_len) / 8;
#if !defined(WORDS_BIGENDIAN)
goto no_unpacking_needed;
#else
for (i = 0; i < count; i++) {
((uint64_t *) array)[i] = parse_fixed_uint64(at);
at += 8;
}
break;
#endif
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated int32 value");
return FALSE;
}
((int32_t *) array)[count++] = parse_int32(s, at);
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_SINT32:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated sint32 value");
return FALSE;
}
((int32_t *) array)[count++] = unzigzag32(parse_uint32(s, at));
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_UINT32:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated enum or uint32 value");
return FALSE;
}
((uint32_t *) array)[count++] = parse_uint32(s, at);
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_SINT64:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated sint64 value");
return FALSE;
}
((int64_t *) array)[count++] = unzigzag64(parse_uint64(s, at));
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated int64/uint64 value");
return FALSE;
}
((int64_t *) array)[count++] = parse_uint64(s, at);
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_BOOL:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated boolean value");
return FALSE;
}
((protobuf_c_boolean *) array)[count++] = parse_boolean(s, at);
at += s;
rem -= s;
}
break;
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
*p_n += count;
return TRUE;
#if !defined(WORDS_BIGENDIAN)
no_unpacking_needed:
memcpy(array, at, count * siz);
*p_n += count;
return TRUE;
#endif
}
static protobuf_c_boolean
is_packable_type(ProtobufCType type)
{
return
type != PROTOBUF_C_TYPE_STRING &&
type != PROTOBUF_C_TYPE_BYTES &&
type != PROTOBUF_C_TYPE_MESSAGE;
}
static protobuf_c_boolean
parse_member(ScannedMember *scanned_member,
ProtobufCMessage *message,
ProtobufCAllocator *allocator)
{
const ProtobufCFieldDescriptor *field = scanned_member->field;
void *member;
if (field == NULL) {
ProtobufCMessageUnknownField *ufield =
message->unknown_fields +
(message->n_unknown_fields++);
ufield->tag = scanned_member->tag;
ufield->wire_type = scanned_member->wire_type;
ufield->len = scanned_member->len;
ufield->data = do_alloc(allocator, scanned_member->len);
if (ufield->data == NULL)
return FALSE;
memcpy(ufield->data, scanned_member->data, ufield->len);
return TRUE;
}
member = (char *) message + field->offset;
switch (field->label) {
case PROTOBUF_C_LABEL_REQUIRED:
return parse_required_member(scanned_member, member,
allocator, TRUE);
case PROTOBUF_C_LABEL_OPTIONAL:
case PROTOBUF_C_LABEL_NONE:
if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF)) {
return parse_oneof_member(scanned_member, member,
message, allocator);
} else {
return parse_optional_member(scanned_member, member,
message, allocator);
}
case PROTOBUF_C_LABEL_REPEATED:
if (scanned_member->wire_type ==
PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED) ||
is_packable_type(field->type)))
{
return parse_packed_repeated_member(scanned_member,
member, message);
} else {
return parse_repeated_member(scanned_member,
member, message,
allocator);
}
}
PROTOBUF_C__ASSERT_NOT_REACHED();
return 0;
}
/**
* Initialise messages generated by old code.
*
* This function is used if desc->message_init == NULL (which occurs
* for old code, and which would be useful to support allocating
* descriptors dynamically).
*/
static void
message_init_generic(const ProtobufCMessageDescriptor *desc,
ProtobufCMessage *message)
{
unsigned i;
memset(message, 0, desc->sizeof_message);
message->descriptor = desc;
for (i = 0; i < desc->n_fields; i++) {
if (desc->fields[i].default_value != NULL &&
desc->fields[i].label != PROTOBUF_C_LABEL_REPEATED)
{
void *field =
STRUCT_MEMBER_P(message, desc->fields[i].offset);
const void *dv = desc->fields[i].default_value;
switch (desc->fields[i].type) {
case PROTOBUF_C_TYPE_INT32:
case PROTOBUF_C_TYPE_SINT32:
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_UINT32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
case PROTOBUF_C_TYPE_ENUM:
memcpy(field, dv, 4);
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_SINT64:
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_UINT64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
memcpy(field, dv, 8);
break;
case PROTOBUF_C_TYPE_BOOL:
memcpy(field, dv, sizeof(protobuf_c_boolean));
break;
case PROTOBUF_C_TYPE_BYTES:
memcpy(field, dv, sizeof(ProtobufCBinaryData));
break;
case PROTOBUF_C_TYPE_STRING:
case PROTOBUF_C_TYPE_MESSAGE:
/*
* The next line essentially implements a cast
* from const, which is totally unavoidable.
*/
*(const void **) field = dv;
break;
}
}
}
}
/**@}*/
/*
* ScannedMember slabs (an unpacking implementation detail). Before doing real
* unpacking, we first scan through the elements to see how many there are (for
* repeated fields), and which field to use (for non-repeated fields given
* twice).
*
* In order to avoid allocations for small messages, we keep a stack-allocated
* slab of ScannedMembers of size FIRST_SCANNED_MEMBER_SLAB_SIZE (16). After we
* fill that up, we allocate each slab twice as large as the previous one.
*/
#define FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2 4
/*
* The number of slabs, including the stack-allocated ones; choose the number so
* that we would overflow if we needed a slab larger than provided.
*/
#define MAX_SCANNED_MEMBER_SLAB \
(sizeof(unsigned int)*8 - 1 \
- BOUND_SIZEOF_SCANNED_MEMBER_LOG2 \
- FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2)
#define REQUIRED_FIELD_BITMAP_SET(index) \
(required_fields_bitmap[(index)/8] |= (1UL<<((index)%8)))
#define REQUIRED_FIELD_BITMAP_IS_SET(index) \
(required_fields_bitmap[(index)/8] & (1UL<<((index)%8)))
ProtobufCMessage *
protobuf_c_message_unpack(const ProtobufCMessageDescriptor *desc,
ProtobufCAllocator *allocator,
size_t len, const uint8_t *data)
{
ProtobufCMessage *rv;
size_t rem = len;
const uint8_t *at = data;
const ProtobufCFieldDescriptor *last_field = desc->fields + 0;
ScannedMember first_member_slab[1UL <<
FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2];
/*
* scanned_member_slabs[i] is an array of arrays of ScannedMember.
* The first slab (scanned_member_slabs[0] is just a pointer to
* first_member_slab), above. All subsequent slabs will be allocated
* using the allocator.
*/
ScannedMember *scanned_member_slabs[MAX_SCANNED_MEMBER_SLAB + 1];
unsigned which_slab = 0; /* the slab we are currently populating */
unsigned in_slab_index = 0; /* number of members in the slab */
size_t n_unknown = 0;
unsigned f;
unsigned j;
unsigned i_slab;
unsigned last_field_index = 0;
unsigned required_fields_bitmap_len;
unsigned char required_fields_bitmap_stack[16];
unsigned char *required_fields_bitmap = required_fields_bitmap_stack;
protobuf_c_boolean required_fields_bitmap_alloced = FALSE;
ASSERT_IS_MESSAGE_DESCRIPTOR(desc);
if (allocator == NULL)
allocator = &protobuf_c__allocator;
rv = do_alloc(allocator, desc->sizeof_message);
if (!rv)
return (NULL);
scanned_member_slabs[0] = first_member_slab;
required_fields_bitmap_len = (desc->n_fields + 7) / 8;
if (required_fields_bitmap_len > sizeof(required_fields_bitmap_stack)) {
required_fields_bitmap = do_alloc(allocator, required_fields_bitmap_len);
if (!required_fields_bitmap) {
do_free(allocator, rv);
return (NULL);
}
required_fields_bitmap_alloced = TRUE;
}
memset(required_fields_bitmap, 0, required_fields_bitmap_len);
/*
* Generated code always defines "message_init". However, we provide a
* fallback for (1) users of old protobuf-c generated-code that do not
* provide the function, and (2) descriptors constructed from some other
* source (most likely, direct construction from the .proto file).
*/
if (desc->message_init != NULL)
protobuf_c_message_init(desc, rv);
else
message_init_generic(desc, rv);
while (rem > 0) {
uint32_t tag;
uint8_t wire_type;
size_t used = parse_tag_and_wiretype(rem, at, &tag, &wire_type);
const ProtobufCFieldDescriptor *field;
ScannedMember tmp;
if (used == 0) {
PROTOBUF_C_UNPACK_ERROR("error parsing tag/wiretype at offset %u",
(unsigned) (at - data));
goto error_cleanup_during_scan;
}
/*
* \todo Consider optimizing for field[1].id == tag, if field[1]
* exists!
*/
if (last_field == NULL || last_field->id != tag) {
/* lookup field */
int field_index =
int_range_lookup(desc->n_field_ranges,
desc->field_ranges,
tag);
if (field_index < 0) {
field = NULL;
n_unknown++;
} else {
field = desc->fields + field_index;
last_field = field;
last_field_index = field_index;
}
} else {
field = last_field;
}
if (field != NULL && field->label == PROTOBUF_C_LABEL_REQUIRED)
REQUIRED_FIELD_BITMAP_SET(last_field_index);
at += used;
rem -= used;
tmp.tag = tag;
tmp.wire_type = wire_type;
tmp.field = field;
tmp.data = at;
tmp.length_prefix_len = 0;
switch (wire_type) {
case PROTOBUF_C_WIRE_TYPE_VARINT: {
unsigned max_len = rem < 10 ? rem : 10;
unsigned i;
for (i = 0; i < max_len; i++)
if ((at[i] & 0x80) == 0)
break;
if (i == max_len) {
PROTOBUF_C_UNPACK_ERROR("unterminated varint at offset %u",
(unsigned) (at - data));
goto error_cleanup_during_scan;
}
tmp.len = i + 1;
break;
}
case PROTOBUF_C_WIRE_TYPE_64BIT:
if (rem < 8) {
PROTOBUF_C_UNPACK_ERROR("too short after 64bit wiretype at offset %u",
(unsigned) (at - data));
goto error_cleanup_during_scan;
}
tmp.len = 8;
break;
case PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED: {
size_t pref_len;
tmp.len = scan_length_prefixed_data(rem, at, &pref_len);
if (tmp.len == 0) {
/* NOTE: scan_length_prefixed_data calls UNPACK_ERROR */
goto error_cleanup_during_scan;
}
tmp.length_prefix_len = pref_len;
break;
}
case PROTOBUF_C_WIRE_TYPE_32BIT:
if (rem < 4) {
PROTOBUF_C_UNPACK_ERROR("too short after 32bit wiretype at offset %u",
(unsigned) (at - data));
goto error_cleanup_during_scan;
}
tmp.len = 4;
break;
default:
PROTOBUF_C_UNPACK_ERROR("unsupported tag %u at offset %u",
wire_type, (unsigned) (at - data));
goto error_cleanup_during_scan;
}
if (in_slab_index == (1UL <<
(which_slab + FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2)))
{
size_t size;
in_slab_index = 0;
if (which_slab == MAX_SCANNED_MEMBER_SLAB) {
PROTOBUF_C_UNPACK_ERROR("too many fields");
goto error_cleanup_during_scan;
}
which_slab++;
size = sizeof(ScannedMember)
<< (which_slab + FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2);
scanned_member_slabs[which_slab] = do_alloc(allocator, size);
if (scanned_member_slabs[which_slab] == NULL)
goto error_cleanup_during_scan;
}
scanned_member_slabs[which_slab][in_slab_index++] = tmp;
if (field != NULL && field->label == PROTOBUF_C_LABEL_REPEATED) {
size_t *n = STRUCT_MEMBER_PTR(size_t, rv,
field->quantifier_offset);
if (wire_type == PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED) ||
is_packable_type(field->type)))
{
size_t count;
if (!count_packed_elements(field->type,
tmp.len -
tmp.length_prefix_len,
tmp.data +
tmp.length_prefix_len,
&count))
{
PROTOBUF_C_UNPACK_ERROR("counting packed elements");
goto error_cleanup_during_scan;
}
*n += count;
} else {
*n += 1;
}
}
at += tmp.len;
rem -= tmp.len;
}
/* allocate space for repeated fields, also check that all required fields have been set */
for (f = 0; f < desc->n_fields; f++) {
const ProtobufCFieldDescriptor *field = desc->fields + f;
if (field->label == PROTOBUF_C_LABEL_REPEATED) {
size_t siz =
sizeof_elt_in_repeated_array(field->type);
size_t *n_ptr =
STRUCT_MEMBER_PTR(size_t, rv,
field->quantifier_offset);
if (*n_ptr != 0) {
unsigned n = *n_ptr;
void *a;
*n_ptr = 0;
assert(rv->descriptor != NULL);
#define CLEAR_REMAINING_N_PTRS() \
for(f++;f < desc->n_fields; f++) \
{ \
field = desc->fields + f; \
if (field->label == PROTOBUF_C_LABEL_REPEATED) \
STRUCT_MEMBER (size_t, rv, field->quantifier_offset) = 0; \
}
a = do_alloc(allocator, siz * n);
if (!a) {
CLEAR_REMAINING_N_PTRS();
goto error_cleanup;
}
STRUCT_MEMBER(void *, rv, field->offset) = a;
}
} else if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
if (field->default_value == NULL &&
!REQUIRED_FIELD_BITMAP_IS_SET(f))
{
CLEAR_REMAINING_N_PTRS();
PROTOBUF_C_UNPACK_ERROR("message '%s': missing required field '%s'",
desc->name, field->name);
goto error_cleanup;
}
}
}
#undef CLEAR_REMAINING_N_PTRS
/* allocate space for unknown fields */
if (n_unknown) {
rv->unknown_fields = do_alloc(allocator,
n_unknown * sizeof(ProtobufCMessageUnknownField));
if (rv->unknown_fields == NULL)
goto error_cleanup;
}
/* do real parsing */
for (i_slab = 0; i_slab <= which_slab; i_slab++) {
unsigned max = (i_slab == which_slab) ?
in_slab_index : (1UL << (i_slab + 4));
ScannedMember *slab = scanned_member_slabs[i_slab];
for (j = 0; j < max; j++) {
if (!parse_member(slab + j, rv, allocator)) {
PROTOBUF_C_UNPACK_ERROR("error parsing member %s of %s",
slab->field ? slab->field->name : "*unknown-field*",
desc->name);
goto error_cleanup;
}
}
}
/* cleanup */
for (j = 1; j <= which_slab; j++)
do_free(allocator, scanned_member_slabs[j]);
if (required_fields_bitmap_alloced)
do_free(allocator, required_fields_bitmap);
return rv;
error_cleanup:
protobuf_c_message_free_unpacked(rv, allocator);
for (j = 1; j <= which_slab; j++)
do_free(allocator, scanned_member_slabs[j]);
if (required_fields_bitmap_alloced)
do_free(allocator, required_fields_bitmap);
return NULL;
error_cleanup_during_scan:
do_free(allocator, rv);
for (j = 1; j <= which_slab; j++)
do_free(allocator, scanned_member_slabs[j]);
if (required_fields_bitmap_alloced)
do_free(allocator, required_fields_bitmap);
return NULL;
}
void
protobuf_c_message_free_unpacked(ProtobufCMessage *message,
ProtobufCAllocator *allocator)
{
const ProtobufCMessageDescriptor *desc;
unsigned f;
if (message == NULL)
return;
desc = message->descriptor;
ASSERT_IS_MESSAGE(message);
if (allocator == NULL)
allocator = &protobuf_c__allocator;
message->descriptor = NULL;
for (f = 0; f < desc->n_fields; f++) {
if (0 != (desc->fields[f].flags & PROTOBUF_C_FIELD_FLAG_ONEOF) &&
desc->fields[f].id !=
STRUCT_MEMBER(uint32_t, message, desc->fields[f].quantifier_offset))
{
/* This is not the selected oneof, skip it */
continue;
}
if (desc->fields[f].label == PROTOBUF_C_LABEL_REPEATED) {
size_t n = STRUCT_MEMBER(size_t,
message,
desc->fields[f].quantifier_offset);
void *arr = STRUCT_MEMBER(void *,
message,
desc->fields[f].offset);
if (arr != NULL) {
if (desc->fields[f].type == PROTOBUF_C_TYPE_STRING) {
unsigned i;
for (i = 0; i < n; i++)
do_free(allocator, ((char **) arr)[i]);
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_BYTES) {
unsigned i;
for (i = 0; i < n; i++)
do_free(allocator, ((ProtobufCBinaryData *) arr)[i].data);
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_MESSAGE) {
unsigned i;
for (i = 0; i < n; i++)
protobuf_c_message_free_unpacked(
((ProtobufCMessage **) arr)[i],
allocator
);
}
do_free(allocator, arr);
}
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_STRING) {
char *str = STRUCT_MEMBER(char *, message,
desc->fields[f].offset);
if (str && str != desc->fields[f].default_value)
do_free(allocator, str);
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_BYTES) {
void *data = STRUCT_MEMBER(ProtobufCBinaryData, message,
desc->fields[f].offset).data;
const ProtobufCBinaryData *default_bd;
default_bd = desc->fields[f].default_value;
if (data != NULL &&
(default_bd == NULL ||
default_bd->data != data))
{
do_free(allocator, data);
}
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_MESSAGE) {
ProtobufCMessage *sm;
sm = STRUCT_MEMBER(ProtobufCMessage *, message,
desc->fields[f].offset);
if (sm && sm != desc->fields[f].default_value)
protobuf_c_message_free_unpacked(sm, allocator);
}
}
for (f = 0; f < message->n_unknown_fields; f++)
do_free(allocator, message->unknown_fields[f].data);
if (message->unknown_fields != NULL)
do_free(allocator, message->unknown_fields);
do_free(allocator, message);
}
void
protobuf_c_message_init(const ProtobufCMessageDescriptor * descriptor,
void *message)
{
descriptor->message_init((ProtobufCMessage *) (message));
}
protobuf_c_boolean
protobuf_c_message_check(const ProtobufCMessage *message)
{
unsigned i;
if (!message ||
!message->descriptor ||
message->descriptor->magic != PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC)
{
return FALSE;
}
for (i = 0; i < message->descriptor->n_fields; i++) {
const ProtobufCFieldDescriptor *f = message->descriptor->fields + i;
ProtobufCType type = f->type;
ProtobufCLabel label = f->label;
void *field = STRUCT_MEMBER_P (message, f->offset);
if (f->flags & PROTOBUF_C_FIELD_FLAG_ONEOF) {
const uint32_t *oneof_case = STRUCT_MEMBER_P (message, f->quantifier_offset);
if (f->id != *oneof_case) {
continue; //Do not check if it is an unpopulated oneof member.
}
}
if (label == PROTOBUF_C_LABEL_REPEATED) {
size_t *quantity = STRUCT_MEMBER_P (message, f->quantifier_offset);
if (*quantity > 0 && *(void **) field == NULL) {
return FALSE;
}
if (type == PROTOBUF_C_TYPE_MESSAGE) {
ProtobufCMessage **submessage = *(ProtobufCMessage ***) field;
unsigned j;
for (j = 0; j < *quantity; j++) {
if (!protobuf_c_message_check(submessage[j]))
return FALSE;
}
} else if (type == PROTOBUF_C_TYPE_STRING) {
char **string = *(char ***) field;
unsigned j;
for (j = 0; j < *quantity; j++) {
if (!string[j])
return FALSE;
}
} else if (type == PROTOBUF_C_TYPE_BYTES) {
ProtobufCBinaryData *bd = *(ProtobufCBinaryData **) field;
unsigned j;
for (j = 0; j < *quantity; j++) {
if (bd[j].len > 0 && bd[j].data == NULL)
return FALSE;
}
}
} else { /* PROTOBUF_C_LABEL_REQUIRED or PROTOBUF_C_LABEL_OPTIONAL */
if (type == PROTOBUF_C_TYPE_MESSAGE) {
ProtobufCMessage *submessage = *(ProtobufCMessage **) field;
if (label == PROTOBUF_C_LABEL_REQUIRED || submessage != NULL) {
if (!protobuf_c_message_check(submessage))
return FALSE;
}
} else if (type == PROTOBUF_C_TYPE_STRING) {
char *string = *(char **) field;
if (label == PROTOBUF_C_LABEL_REQUIRED && string == NULL)
return FALSE;
} else if (type == PROTOBUF_C_TYPE_BYTES) {
protobuf_c_boolean *has = STRUCT_MEMBER_P (message, f->quantifier_offset);
ProtobufCBinaryData *bd = field;
if (label == PROTOBUF_C_LABEL_REQUIRED || *has == TRUE) {
if (bd->len > 0 && bd->data == NULL)
return FALSE;
}
}
}
}
return TRUE;
}
/* === services === */
typedef void (*GenericHandler) (void *service,
const ProtobufCMessage *input,
ProtobufCClosure closure,
void *closure_data);
void
protobuf_c_service_invoke_internal(ProtobufCService *service,
unsigned method_index,
const ProtobufCMessage *input,
ProtobufCClosure closure,
void *closure_data)
{
GenericHandler *handlers;
GenericHandler handler;
/*
* Verify that method_index is within range. If this fails, you are
* likely invoking a newly added method on an old service. (Although
* other memory corruption bugs can cause this assertion too.)
*/
assert(method_index < service->descriptor->n_methods);
/*
* Get the array of virtual methods (which are enumerated by the
* generated code).
*/
handlers = (GenericHandler *) (service + 1);
/*
* Get our method and invoke it.
* \todo Seems like handler == NULL is a situation that needs handling.
*/
handler = handlers[method_index];
(*handler)(service, input, closure, closure_data);
}
void
protobuf_c_service_generated_init(ProtobufCService *service,
const ProtobufCServiceDescriptor *descriptor,
ProtobufCServiceDestroy destroy)
{
ASSERT_IS_SERVICE_DESCRIPTOR(descriptor);
service->descriptor = descriptor;
service->destroy = destroy;
service->invoke = protobuf_c_service_invoke_internal;
memset(service + 1, 0, descriptor->n_methods * sizeof(GenericHandler));
}
void protobuf_c_service_destroy(ProtobufCService *service)
{
service->destroy(service);
}
/* --- querying the descriptors --- */
const ProtobufCEnumValue *
protobuf_c_enum_descriptor_get_value_by_name(const ProtobufCEnumDescriptor *desc,
const char *name)
{
unsigned start = 0;
unsigned count;
if (desc == NULL || desc->values_by_name == NULL)
return NULL;
count = desc->n_value_names;
while (count > 1) {
unsigned mid = start + count / 2;
int rv = strcmp(desc->values_by_name[mid].name, name);
if (rv == 0)
return desc->values + desc->values_by_name[mid].index;
else if (rv < 0) {
count = start + count - (mid + 1);
start = mid + 1;
} else
count = mid - start;
}
if (count == 0)
return NULL;
if (strcmp(desc->values_by_name[start].name, name) == 0)
return desc->values + desc->values_by_name[start].index;
return NULL;
}
const ProtobufCEnumValue *
protobuf_c_enum_descriptor_get_value(const ProtobufCEnumDescriptor *desc,
int value)
{
int rv = int_range_lookup(desc->n_value_ranges, desc->value_ranges, value);
if (rv < 0)
return NULL;
return desc->values + rv;
}
const ProtobufCFieldDescriptor *
protobuf_c_message_descriptor_get_field_by_name(const ProtobufCMessageDescriptor *desc,
const char *name)
{
unsigned start = 0;
unsigned count;
const ProtobufCFieldDescriptor *field;
if (desc == NULL || desc->fields_sorted_by_name == NULL)
return NULL;
count = desc->n_fields;
while (count > 1) {
unsigned mid = start + count / 2;
int rv;
field = desc->fields + desc->fields_sorted_by_name[mid];
rv = strcmp(field->name, name);
if (rv == 0)
return field;
else if (rv < 0) {
count = start + count - (mid + 1);
start = mid + 1;
} else
count = mid - start;
}
if (count == 0)
return NULL;
field = desc->fields + desc->fields_sorted_by_name[start];
if (strcmp(field->name, name) == 0)
return field;
return NULL;
}
const ProtobufCFieldDescriptor *
protobuf_c_message_descriptor_get_field(const ProtobufCMessageDescriptor *desc,
unsigned value)
{
int rv = int_range_lookup(desc->n_field_ranges,desc->field_ranges, value);
if (rv < 0)
return NULL;
return desc->fields + rv;
}
const ProtobufCMethodDescriptor *
protobuf_c_service_descriptor_get_method_by_name(const ProtobufCServiceDescriptor *desc,
const char *name)
{
unsigned start = 0;
unsigned count;
if (desc == NULL || desc->method_indices_by_name == NULL)
return NULL;
count = desc->n_methods;
while (count > 1) {
unsigned mid = start + count / 2;
unsigned mid_index = desc->method_indices_by_name[mid];
const char *mid_name = desc->methods[mid_index].name;
int rv = strcmp(mid_name, name);
if (rv == 0)
return desc->methods + desc->method_indices_by_name[mid];
if (rv < 0) {
count = start + count - (mid + 1);
start = mid + 1;
} else {
count = mid - start;
}
}
if (count == 0)
return NULL;
if (strcmp(desc->methods[desc->method_indices_by_name[start]].name, name) == 0)
return desc->methods + desc->method_indices_by_name[start];
return NULL;
}