mirror of
https://github.com/CovidBraceletPrj/CovidBracelet.git
synced 2025-01-09 04:44:22 +01:00
327 lines
8.7 KiB
Python
327 lines
8.7 KiB
Python
import json
|
|
import os
|
|
|
|
import numpy as np
|
|
import math
|
|
|
|
import matplotlib.pyplot as plt
|
|
from eval_utility import slugify, cached, init_cache, load_env_config
|
|
|
|
import matplotlib.ticker as ticker
|
|
from matplotlib.ticker import PercentFormatter
|
|
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
|
|
import matplotlib as mpl
|
|
|
|
VOLTS = 3.0
|
|
|
|
METHOD_PREFIX = 'export_'
|
|
|
|
CONFIDENCE_FILL_COLOR = '0.8'
|
|
|
|
NUM_NODES = 24
|
|
|
|
def load_plot_defaults():
|
|
# Configure as needed
|
|
plt.rc('lines', linewidth=2.0)
|
|
plt.rc('legend', framealpha=1.0, fancybox=True)
|
|
plt.rc('errorbar', capsize=3)
|
|
plt.rc('pdf', fonttype=42)
|
|
plt.rc('ps', fonttype=42)
|
|
plt.rc('font', size=10, family="serif", serif=['Times New Roman'] + plt.rcParams['font.serif'])
|
|
#mpl.style.use('tableau-colorblind10')
|
|
|
|
load_plot_defaults()
|
|
|
|
idle_avg = 0.00252
|
|
idle_max = 0.02325
|
|
|
|
IDLE_LABEL = 'idle'
|
|
consumptions = {}
|
|
durations = {}
|
|
times_per_day = {}
|
|
scaled_consumptions = {}
|
|
raw_scaled_consumptions = {}
|
|
|
|
def add_consumption(label, consumption_msrmnt, duration, tpd, repetitions=1):
|
|
consumptions[label] = consumption_msrmnt
|
|
durations[label] = duration/repetitions
|
|
times_per_day[label] = tpd
|
|
|
|
|
|
def calculate_usage_seconds_per_day(labels, normalize_with_idle=True):
|
|
# we first calculate the times for each label
|
|
usage_seconds = {
|
|
IDLE_LABEL: 0
|
|
}
|
|
sum = 0
|
|
for l in labels:
|
|
if l == IDLE_LABEL:
|
|
continue
|
|
usage_seconds[l] = durations[l]*times_per_day[l]
|
|
assert 0 <= usage_seconds[l] <= 24*3600.0
|
|
sum += usage_seconds[l]
|
|
|
|
if sum < 24*3600.0:
|
|
usage_seconds[IDLE_LABEL] = 24*3600.0-sum # we spent the rest of the time idling!
|
|
|
|
cons_per_day = {}
|
|
for l in labels:
|
|
cons_per_day[l] = usage_seconds[l] # also convert to ampere hours!
|
|
return cons_per_day
|
|
|
|
def calculate_consumption_per_day(labels, normalize_with_idle=True):
|
|
# we first calculate the times for each label
|
|
usage_seconds = {
|
|
IDLE_LABEL: 0
|
|
}
|
|
sum = 0
|
|
for l in labels:
|
|
if l == IDLE_LABEL:
|
|
continue
|
|
usage_seconds[l] = durations[l]*times_per_day[l]
|
|
assert 0 <= usage_seconds[l] <= 24*3600.0
|
|
sum += usage_seconds[l]
|
|
|
|
if sum < 24*3600.0:
|
|
usage_seconds[IDLE_LABEL] = 24*3600.0-sum # we spent the rest of the time idling!
|
|
|
|
cons_per_day = {}
|
|
for l in labels:
|
|
cons_per_day[l] = consumptions[l]*usage_seconds[l]*(1/3600.0) # also convert to ampere hours!
|
|
return cons_per_day
|
|
|
|
|
|
# calculate the remaining idle time
|
|
|
|
|
|
|
|
# THE TOTAL EXPECTED AMOUNT PER DAY in milli ampere
|
|
expected_consumption_per_day = 0.0
|
|
|
|
idle_consumption = 0.00256
|
|
add_consumption(IDLE_LABEL, idle_consumption, 1.0, 1.0)
|
|
|
|
# ADVERTISING
|
|
adv_interval = 0.250
|
|
adv_consumptions = [
|
|
2.45,
|
|
2.47,
|
|
2.41,
|
|
2.35,
|
|
2.47,
|
|
2.39,
|
|
2.45,
|
|
2.47,
|
|
2.49,
|
|
2.45
|
|
]
|
|
|
|
adv_max_consumption = [
|
|
7.66,
|
|
8.31,
|
|
6.96,
|
|
7.3,
|
|
7.77,
|
|
7.6,
|
|
8.55,
|
|
6.94,
|
|
7.14,
|
|
6.85
|
|
]
|
|
|
|
|
|
|
|
# TODO: Add error bars if possible!
|
|
# measured_duration
|
|
# duration
|
|
# repetitions
|
|
adv_consumption = sum(list(adv_consumptions)) / len(adv_consumptions)
|
|
|
|
add_consumption('adv', adv_consumption, 0.004, (24*3600)/0.25)
|
|
|
|
# SCANNING
|
|
scan_consumption = 6.01
|
|
scan_consumption_max = 8.71
|
|
add_consumption('scan', scan_consumption, 2.015, 24*12)
|
|
|
|
|
|
crypt_duration = 0.22
|
|
crypt_consumption_avg = 3.2
|
|
crypt_consumption_max = 5.96
|
|
|
|
add_consumption('daily_crypto', crypt_consumption_avg, 0.22, 10)
|
|
|
|
# A table for the timings of the cryptographic fundamentals
|
|
# One detailed graph as a comparison of the advertisements
|
|
# One bar graph for each of the factors involved in the daily energy usage
|
|
|
|
tek_check_duration = 2.081
|
|
tek_check_amount = 144
|
|
tek_check_consumption = 3.74
|
|
tek_check_consumption_max = 4.49
|
|
|
|
|
|
# generate graph with keys to check
|
|
# Worst case scenario: Flash is fully used!
|
|
# we generate a bloom filter of all records!
|
|
|
|
|
|
# How long does it take to create the bloom filter for the whole dataset?
|
|
#64kByte
|
|
|
|
|
|
|
|
# then check keys (i.e., maybe 32 teks at once?)
|
|
# measure time
|
|
# measure consumption
|
|
# extrapolate numbers for more keys!
|
|
|
|
|
|
def export_consumption_per_day():
|
|
cpd = calculate_consumption_per_day([
|
|
IDLE_LABEL, 'adv', 'scan', 'daily_crypto'
|
|
])
|
|
print("export_consumption_per_day")
|
|
print(cpd)
|
|
print(sum(cpd.values()))
|
|
ys = ['Idle', 'Adv.', 'Scan', 'Crypto\n(Daily)']
|
|
xs = [cpd[IDLE_LABEL], cpd['adv'], cpd['scan'], cpd['daily_crypto']]
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
ax.set_ylabel('Avg. Daily Consumption [mA h]')
|
|
ax.set_xlabel('Functionality')
|
|
|
|
bars = ax.bar(ys,xs)
|
|
|
|
xs_labels = ["{:.2f}".format(x) if x >= 0.01 else "<0.01" for x in xs]
|
|
ax.bar_label(bars, padding=0, labels=xs_labels)
|
|
|
|
# Adapt the figure size as needed
|
|
|
|
fig.set_size_inches(2.5, 2.75)
|
|
ax.set_ylim([0, 2])
|
|
plt.tight_layout()
|
|
plt.savefig("../out/weighted_consumption.pdf", format="pdf", bbox_inches='tight')
|
|
plt.close()
|
|
|
|
|
|
def export_usage_seconds_per_day():
|
|
cpd = calculate_usage_seconds_per_day([
|
|
IDLE_LABEL, 'adv', 'scan', 'daily_crypto'
|
|
])
|
|
print("export_usage_seconds_per_day")
|
|
print(sum(cpd.values()))
|
|
print(cpd)
|
|
ys = ['Idle', 'Adv.', 'Scan', 'Crypto\n(Daily)']
|
|
xs = [cpd[IDLE_LABEL], cpd['adv'], cpd['scan'], cpd['daily_crypto']]
|
|
xs = [100*x/(24*3600) for x in xs]
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
ax.set_ylabel('Estimated Duration per Day [%]')
|
|
ax.set_xlabel('Functionality')
|
|
|
|
bars = ax.bar(ys,xs)
|
|
|
|
xs_labels = ["{:.2f}".format(x) if x >= 0.01 else "<0.01" for x in xs]
|
|
ax.bar_label(bars, padding=0, labels=xs_labels)
|
|
|
|
ax = plt.gca()
|
|
#ax.set_xlim([xmin, xmax])
|
|
ax.set_ylim([0, 109])
|
|
|
|
# Adapt the figure size as needed
|
|
fig.set_size_inches(2.5, 2.7)
|
|
plt.tight_layout()
|
|
plt.savefig("../out/export_usage_seconds_per_day.pdf", format="pdf", bbox_inches='tight')
|
|
plt.close()
|
|
|
|
def export_current_per_functionality():
|
|
|
|
ys = ['Idle', 'Adv.', 'Scan', 'Crypto\n(Daily)']
|
|
xs = [consumptions[IDLE_LABEL], consumptions['adv'], consumptions['scan'], consumptions['daily_crypto']]
|
|
|
|
print("export_current_per_functionality")
|
|
print(consumptions)
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
ax.set_ylabel('Avg. Consumption [mA]')
|
|
ax.set_xlabel('Functionality')
|
|
|
|
bars = ax.bar(ys,xs)
|
|
|
|
xs_labels = ["{:.2f}".format(x) if x >= 0.01 else "<0.01" for x in xs]
|
|
ax.bar_label(bars, padding=0, fmt='%.2f', labels=xs_labels)
|
|
|
|
# Adapt the figure size as needed
|
|
fig.set_size_inches(2.5, 2.75)
|
|
ax.set_ylim([0, 8])
|
|
plt.tight_layout()
|
|
plt.savefig("../out/current_per_functionality.pdf", format="pdf", bbox_inches='tight')
|
|
plt.close()
|
|
|
|
def export_tek_check():
|
|
|
|
xs = [0, 1250000, 2500000, 5000000]
|
|
|
|
means = {}
|
|
|
|
for l in ['GAEN', 'TEK Transport', 'TEK Check']:
|
|
means[l] = []
|
|
|
|
for tpd in xs:
|
|
add_consumption('tek_check_' + str(tpd), tek_check_consumption, tek_check_duration, tpd, repetitions=tek_check_amount)
|
|
add_consumption('tek_transport_' + str(tpd), 8, 1.0, tpd, repetitions=3125)
|
|
|
|
print(tpd)
|
|
|
|
#upd = calculate_usage_seconds_per_day([
|
|
# IDLE_LABEL, 'adv', 'scan', 'daily_crypto', 'tek_check_' + str(tpd), 'tek_transport_' + str(tpd)
|
|
#])
|
|
#print(upd)
|
|
cpd = calculate_consumption_per_day([
|
|
IDLE_LABEL, 'adv', 'scan', 'daily_crypto', 'tek_check_' + str(tpd), 'tek_transport_' + str(tpd)
|
|
])
|
|
print(cpd)
|
|
|
|
means['GAEN'].append(cpd[IDLE_LABEL]+ cpd['adv']+cpd['scan']+ cpd['daily_crypto'])
|
|
means['TEK Transport'].append(cpd['tek_transport_' + str(tpd)])
|
|
means['TEK Check'].append(cpd['tek_check_' + str(tpd)])
|
|
|
|
|
|
labels = ['GAEN', 'TEK Transport', 'TEK Check']
|
|
|
|
width = 0.4 # the width of the bars: can also be len(x) sequence
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
|
|
#xs = [str(x) for x in xs]
|
|
xs = ['0', '1,250,000', '2,500,000', '5,000,000']
|
|
ax.bar(xs, means['GAEN'], width, label='GAEN')
|
|
ax.bar(xs, means['TEK Transport'], width, label='TEK Transport', bottom=means['GAEN'])
|
|
bars = ax.bar(xs, means['TEK Check'], width, label='TEK Check', bottom=[means['GAEN'][i]+means['TEK Transport'][i] for (i,x) in enumerate(xs)])
|
|
|
|
bar_labels = [means['GAEN'][i]+means['TEK Transport'][i]+means['TEK Check'][i] for (i,x) in enumerate(xs)]
|
|
bar_labels = ['{:.2f}'.format(l) for l in bar_labels]
|
|
print(bar_labels)
|
|
ax.bar_label(bars, padding=0, labels=bar_labels)
|
|
|
|
ax.set_ylabel('Estimated Daily Consumption [mAh]')
|
|
ax.set_xlabel('Number of TEKs per Day')
|
|
ax.legend()
|
|
|
|
# Adapt the figure size as needed
|
|
fig.set_size_inches(3.6, 2.8)
|
|
ax.set_ylim([0, 100])
|
|
plt.tight_layout()
|
|
plt.savefig("../out/tek_check.pdf", format="pdf", bbox_inches='tight')
|
|
plt.close()
|
|
|
|
|
|
export_usage_seconds_per_day()
|
|
export_consumption_per_day()
|
|
export_current_per_functionality()
|
|
export_tek_check() |