CovidBracelet/src/tracing.c

321 lines
9.1 KiB
C

/*
* Copyright (c) 2020 Olaf Landsiedel
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/types.h>
#include <stddef.h>
#include <sys/printk.h>
#include <sys/util.h>
#include <string.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <kernel.h>
#include "exposure-notification.h"
#include "tracing.h"
#include "record_storage.h"
#include "tek_storage.h"
#include "utility/util.h"
#define COVID_ENS (0xFD6F)
typedef ENIntervalIdentifier ENIntervalIdentifier;
#define RPI_ROTATION_MS_MIN (500*1000)
#define RPI_ROTATION_MS_MAX (1250*1000)
#define RPI_ROTATION_MS (600*1000)
#define SCAN_INTERVAL_MS (5*60*1000)
#define SCAN_DURATION_MS 2000
#define ADV_INTERVAL_MS 250
K_TIMER_DEFINE(rpi_timer, NULL, NULL);
K_TIMER_DEFINE(scan_timer, NULL, NULL);
static int on_rpi();
static int on_scan();
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_vs.h>
#include <sys/byteorder.h>
#define DEVICE_BEACON_TXPOWER_NUM 6
static const int8_t txp[DEVICE_BEACON_TXPOWER_NUM] = {0, -4, -8,
-16, -20, -40};
static void set_tx_power(int8_t tx_pwr_lvl)
{
struct bt_hci_cp_vs_write_tx_power_level *cp;
struct bt_hci_rp_vs_write_tx_power_level *rp;
struct net_buf *buf, *rsp = NULL;
int err;
buf = bt_hci_cmd_create(BT_HCI_OP_VS_WRITE_TX_POWER_LEVEL,
sizeof(*cp));
if (!buf) {
printk("Unable to allocate command buffer\n");
return;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(0);
cp->handle_type = BT_HCI_VS_LL_HANDLE_TYPE_ADV;
cp->tx_power_level = tx_pwr_lvl;
err = bt_hci_cmd_send_sync(BT_HCI_OP_VS_WRITE_TX_POWER_LEVEL,
buf, &rsp);
if (err) {
uint8_t reason = rsp ?
((struct bt_hci_rp_vs_write_tx_power_level *)
rsp->data)->status : 0;
printk("Set Tx power err: %d reason 0x%02x\n", err, reason);
return;
}
rp = (void *)rsp->data;
printk("Actual Tx Power: %d\n", rp->selected_tx_power);
net_buf_unref(rsp);
}
static int cur_tx_pwr = 0;
typedef struct period{
ENPeriodKey periodKey;
ENIntervalNumber periodInterval;
} __packed period_t;
typedef struct covid_adv_svd
{
uint16_t ens;
ENIntervalIdentifier rolling_proximity_identifier;
associated_encrypted_metadata_t associated_encrypted_metadata;
} __packed covid_adv_svd_t;
const static bt_metadata_t bt_metadata = {
.version = 0b00100000,
.tx_power = 0, //TODO set to actual transmit power
.rsv1 = 0,
.rsv2 = 0,
};
static covid_adv_svd_t covid_adv_svd = {
.ens = COVID_ENS,
//do not initialiuze the rest of the packet, will write this later
};
static struct bt_data ad[] = {
BT_DATA_BYTES(BT_DATA_FLAGS, (BT_LE_AD_GENERAL | BT_LE_AD_NO_BREDR)),
BT_DATA_BYTES(BT_DATA_UUID16_ALL, 0x6f, 0xfd), //0xFD6F Exposure Notification Service
BT_DATA(BT_DATA_SVC_DATA16, &covid_adv_svd, sizeof(covid_adv_svd_t))};
int adv_start() {
return bt_le_adv_start(BT_LE_ADV_PARAM(0, (ADV_INTERVAL_MS-10)/0.625, (ADV_INTERVAL_MS+10)/0.625, NULL), ad, ARRAY_SIZE(ad), NULL, 0);
}
int adv_stop() {
return bt_le_adv_stop();
}
int tracing_init()
{
// We init the timers (which should run periodically!)
k_timer_start(&rpi_timer, K_NO_WAIT, K_MSEC(RPI_ROTATION_MS)); // we directly init the rpi timer, to be sure that this is triggered at the beginning
k_timer_start(&scan_timer, K_MSEC(SCAN_INTERVAL_MS), K_MSEC(SCAN_INTERVAL_MS));
int err = 0;
err = adv_start();
if (err)
{
printk("Advertising failed to start (err %d)\n", err);
return err;
}
return 0;
}
uint32_t tracing_run()
{
if (k_timer_status_get(&rpi_timer) > 0) {
int err = adv_stop();
if (err)
{
printk("Advertising failed to stop (err %d)\n", err);
}
on_rpi();
// TODO: Enable power randomization!
//cur_tx_pwr = (cur_tx_pwr +1) % DEVICE_BEACON_TXPOWER_NUM;
//set_tx_power(txp[cur_tx_pwr]);
adv_start();
}
if (k_timer_status_get(&scan_timer) > 0) {
int err = adv_stop();
if (err)
{
printk("Advertising failed to stop (err %d)\n", err);
}
on_scan();
adv_start();
}
// we return the minimum timer time so that main can sleep
return MIN( k_timer_remaining_get(&rpi_timer), k_timer_remaining_get(&scan_timer));
}
int on_rpi() {
printk("\n----------------------------------------\n\n");
printk("*** New Interval\n");
// we first get the relevant TEK
uint32_t currentTime = time_get_unix_seconds();
tek_t tek;
int err = tek_storage_get_latest_at_ts(&tek, currentTime);
if (err != 0) {
printk("ERROR: COULD NOT DETERMINE TEK!!!\n");
return err;
}
ENIntervalNumber currentInterval = en_get_interval_number(currentTime);
// we now generate the new interval identifier and re-encrypt the metadata
// TODO: The period identifier key and the MetadataEncryptionKey do not need to be derived everytime!
ENPeriodMetadataEncryptionKey periodMetadataEncryptionKey;
ENPeriodIdentifierKey pik;
ENIntervalIdentifier intervalIdentifier;
en_derive_period_identifier_key(&pik, &tek.tek);
en_derive_interval_identifier(&intervalIdentifier, &pik, currentInterval);
associated_encrypted_metadata_t encryptedMetadata;
en_derive_period_metadata_encryption_key(&periodMetadataEncryptionKey, &tek.tek);
en_encrypt_interval_metadata(&periodMetadataEncryptionKey, &intervalIdentifier, (unsigned char*)&bt_metadata, (unsigned char*)&encryptedMetadata, sizeof(associated_encrypted_metadata_t));
// broadcast intervalIdentifier plus encryptedMetada according to specs
//printk("\n----------------------------------------\n\n");
printk("Time: %u, ", currentTime);
printk("Interval: %u, ", currentInterval);
printk("TEK: ");
print_rpi((ENIntervalIdentifier *)&tek.tek);
printk(", ");
printk("RPI: ");
print_rpi((ENIntervalIdentifier *)&intervalIdentifier);
printk(", ");
printk("AEM: ");
print_aem(&encryptedMetadata);
printk("\n");
memcpy(&covid_adv_svd.rolling_proximity_identifier, &intervalIdentifier, sizeof(ENIntervalIdentifier));
memcpy(&covid_adv_svd.associated_encrypted_metadata, &encryptedMetadata, sizeof(associated_encrypted_metadata_t));
return 0;
}
static const struct bt_le_scan_param scan_param = {
.type = BT_HCI_LE_SCAN_PASSIVE,
.options = BT_LE_SCAN_OPT_FILTER_DUPLICATE,
.interval = 0x0C80, //Scan Interval (N * 0.625 ms), TODO: set to correct interval
.window = 0x0C80, //Scan Window (N * 0.625 ms), TODO: set to correct interval
};
static void scan_cb(const bt_addr_le_t *addr, int8_t rssi, uint8_t adv_type, struct net_buf_simple *buf)
{
if (adv_type == 3)
{
uint8_t len = 0;
while (buf->len > 1)
{
uint8_t type;
len = net_buf_simple_pull_u8(buf);
if (!len)
{
break;
}
/* Check if field length is correct */
if (len > buf->len || buf->len < 1)
{
break;
}
type = net_buf_simple_pull_u8(buf);
if (type == BT_DATA_SVC_DATA16 && len == sizeof(covid_adv_svd_t) + 1)
{
covid_adv_svd_t *rx_adv = (covid_adv_svd_t *)buf->data;
if (rx_adv->ens == COVID_ENS)
{
//printk("Attempting to store record...\n");
record_t record;
uint32_t timestamp = time_get_unix_seconds();
memcpy(&record.rssi, &rssi, sizeof(record.rssi));
memcpy(&record.associated_encrypted_metadata, &rx_adv->associated_encrypted_metadata, sizeof(record.associated_encrypted_metadata));
memcpy(&record.rolling_proximity_identifier, &rx_adv->rolling_proximity_identifier, sizeof(record.rolling_proximity_identifier));
memcpy(&record.timestamp, &timestamp, sizeof(record.timestamp));
int rc = add_record(&record);
if (rc != 0) {
printk("ERROR: Storing record failed (err %d)\n", rc);
}
}
}
net_buf_simple_pull(buf, len - 1); //consume the rest, note we already consumed one byte via net_buf_simple_pull_u8(buf)
}
}
}
int on_scan() {
uint32_t num_devs = get_num_records();
printk("Scanning for devices...\n");
int err = 0;
err = bt_le_scan_start(&scan_param, scan_cb);
if (err)
{
printk("Starting scanning failed (err %d)\n", err);
return err;
}
k_sleep(K_MSEC(SCAN_DURATION_MS)); // TODO: what to put here?
err = bt_le_scan_stop();
if (err)
{
printk("Stopping scan failed (err %d)\n", err);
return err;
}
printk("Scanning done... %u devices found\n", get_num_records()-num_devs);
return 0;
}