#include #include #include "covid_types.h" #include "ens/ens_error.h" #include "ens/records.h" #include "ens/sequencenumber.h" #include "ens/storage.h" int ens_records_iterator_init_range(record_iterator_t* iterator, record_sequence_number_t* opt_start, record_sequence_number_t* opt_end) { // prevent any changes during initialization int rc = get_sequence_number_interval(&iterator->sn_next, &iterator->sn_end); if (rc == 0) { iterator->finished = false; // we override start and end with the optional values if (opt_start) { iterator->sn_next = *opt_start; } if (opt_end) { iterator->sn_end = *opt_end; } } else { iterator->finished = true; } return 0; } int64_t get_timestamp_for_sn(record_sequence_number_t sn) { record_t rec; if (load_record(&rec, sn) == 0) { return rec.timestamp; } else { return -1; } } enum record_timestamp_search_mode { RECORD_TIMESTAMP_SEARCH_MODE_MIN, RECORD_TIMESTAMP_SEARCH_MODE_MAX, }; /** * Find an entry via binary search for the timestamp. * * @param record pointer to the location, where the found sn shall be stored * @param target timestamp for which to find the nearest entry for * @param greater flag for indicating, if the loaded sn shall correspond to a greater (1) or smaller (0) timestamp */ int find_sn_via_binary_search(record_sequence_number_t* sn_dest, uint32_t target, enum record_timestamp_search_mode search_mode) { record_sequence_number_t start_sn; record_sequence_number_t end_sn; // prevent any changes during binary search initialization int rc = get_sequence_number_interval(&start_sn, &end_sn); if (rc) { return rc; } record_sequence_number_t last_sn = start_sn; // used to check if ran into issues, e.g. could not load the entry or rounding errors while (!sn_equal(start_sn, end_sn)) { // calculate the sn in the middle between start and end record_sequence_number_t cur_sn = sn_get_middle_sn(start_sn, end_sn); if (sn_equal(cur_sn, last_sn)) { // if we already checked this entry -> we reduce our boundaries and try again // this also solves issues with rounding // TODO: This is not the best way... if (search_mode == RECORD_TIMESTAMP_SEARCH_MODE_MIN) { int64_t start_ts = get_timestamp_for_sn(start_sn); if (start_ts == -1 || start_ts < target) { // we could not load this entry or this entry is strictly smaller than our target start_sn = sn_increment(start_sn); // we can safely increment as start_sn < end_sn } else { // we actually found the wanted entry! end_sn = start_sn; // this will break our loop } } else { // we search for the biggest value among them int64_t end_ts = get_timestamp_for_sn(end_sn); if (end_ts == -1 || end_ts > target) { // we could not load this entry or this entry is strictly bigger than our target end_sn = sn_decrement(end_sn); // we can safely decrement as start_sn < end_sn } else { // we actually found the wanted entry! start_sn = end_sn; // this will break our loop } } } else { int64_t mid_ts = get_timestamp_for_sn(cur_sn); if (mid_ts >= 0) { if (target < mid_ts) { end_sn = cur_sn; } else if (target > mid_ts) { start_sn = cur_sn; } else { // target == mid_ts if (search_mode == RECORD_TIMESTAMP_SEARCH_MODE_MIN) { // we search for the smallest value among them -> look before this item end_sn = cur_sn; } else { // we search for the biggest value among them -> look after this item start_sn = cur_sn; } } } else { // some errors -> we keep the current sn and try to narrow our boundaries } } last_sn = cur_sn; } *sn_dest = start_sn; // == end_sn return 0; } // TODO: This iterator does neither check if the sequence numbers wrapped around while iteration. As a result, first // results could have later timestamps than following entries int ens_records_iterator_init_timerange(record_iterator_t* iterator, time_t* ts_start, time_t* ts_end) { record_sequence_number_t oldest_sn = 0; record_sequence_number_t newest_sn = 0; // assure that *ts_end > *ts_start if (ts_start && ts_end && *ts_end < *ts_start) { return 1; } if (ts_start) { int rc = find_sn_via_binary_search(&oldest_sn, *ts_start, RECORD_TIMESTAMP_SEARCH_MODE_MIN); if (rc) { return rc; } } else { oldest_sn = get_oldest_sequence_number(); } if (ts_end) { int rc = find_sn_via_binary_search(&newest_sn, *ts_end, RECORD_TIMESTAMP_SEARCH_MODE_MAX); if (rc) { return rc; } } else { newest_sn = get_latest_sequence_number(); } return ens_records_iterator_init_range(iterator, &oldest_sn, &newest_sn); } record_t* ens_records_iterator_next(record_iterator_t* iter) { record_t* next = NULL; while (next == NULL && !iter->finished) { record_t contact; // try to load the next contact int res = load_record(&contact, iter->sn_next); if (!res) { next = &iter->current; memcpy(next, &contact, sizeof(record_t)); } if (sn_equal(iter->sn_next, iter->sn_end)) { iter->finished = true; // this iterator will finish after this execution } else { // increase the current sn iter->sn_next = sn_increment(iter->sn_next); } } return next; } int ens_record_iterator_clear(record_iterator_t* iter) { // clear all relevant fields in the iterator iter->finished = true; iter->sn_next = 0; iter->sn_end = 0; memset(&iter->current, 0, sizeof(iter->current)); return 0; } uint8_t ens_records_iterate_with_callback(record_iterator_t* iter, ens_record_iterator_cb_t cb, void* userdata) { record_t* cur = ens_records_iterator_next(iter); bool cont = true; while (cur != NULL && cont) { int cb_res = cb(cur, userdata); if (cb_res == ENS_RECORD_ITER_STOP) { cont = false; } } if (cont) { cb(NULL, userdata); // we call the callback one last time but with null data } return 0; }