1
0
mirror of https://github.com/CovidBraceletPrj/CovidBracelet.git synced 2025-01-24 20:07:13 +01:00

Simplify Tracing

This commit is contained in:
Patrick Rathje 2022-05-27 23:08:04 +02:00
parent 612b638433
commit 1bc7d1131a

View File

@ -17,6 +17,7 @@
#include "exposure-notification.h"
#include "tracing.h"
#include "record_storage.h"
#include "tek_storage.h"
#include "utility/util.h"
@ -24,6 +25,59 @@
typedef ENIntervalIdentifier ENIntervalIdentifier;
#define RPI_ROTATION_MS (11*60*1000)
#define SCAN_INTERVAL_MS (1*60*1000)
#define SCAN_DURATION_MS 1000
#define ADV_INTERVAL_MS 220
#define ADV_DURATION_MS 1000
K_TIMER_DEFINE(rpi_timer, NULL, NULL);
K_TIMER_DEFINE(scan_timer, NULL, NULL);
K_TIMER_DEFINE(adv_timer, NULL, NULL);
static int on_rpi();
static int on_scan();
static int on_adv();
int tracing_init()
{
// We init the timers (which should run periodically!)
k_timer_start(&rpi_timer, K_NO_WAIT, K_MSEC(RPI_ROTATION_MS)); // we directly init the rpi timer, to be sure that this is triggered at the beginning
k_timer_start(&scan_timer, K_MSEC(SCAN_INTERVAL_MS), K_MSEC(SCAN_INTERVAL_MS));
k_timer_start(&adv_timer, K_MSEC(ADV_INTERVAL_MS), K_MSEC(ADV_INTERVAL_MS));
return 0;
}
int tracing_run()
{
if (k_timer_status_get(&rpi_timer) > 0) {
on_rpi();
}
if (k_timer_status_get(&scan_timer) > 0) {
on_scan();
}
if (k_timer_status_get(&adv_timer) > 0) {
on_adv();
}
//printk("covid start\n");
//printk("covid end\n");
return 0;
}
@ -58,7 +112,67 @@ static struct bt_data ad[] = {
BT_DATA_BYTES(BT_DATA_UUID16_ALL, 0x6f, 0xfd), //0xFD6F Exposure Notification Service
BT_DATA(BT_DATA_SVC_DATA16, &covid_adv_svd, sizeof(covid_adv_svd_t))};
static struct k_mutex key_change_lock;
int on_rpi() {
printk("\n----------------------------------------\n\n");
printk("*** New Interval\n");
// we first get the relevant TEK
uint32_t currentTime = time_get_unix_seconds();
tek_t tek;
int err = tek_storage_get_latest_at_ts(&tek, currentTime);
if (err != 0) {
printk("ERROR: COULD NOT DETERMINE TEK!!!\n");
return err;
}
ENIntervalNumber currentInterval = en_get_interval_number(currentTime);
// we now generate the new interval identifier and re-encrypt the metadata
// TODO: The period identifier key and the MetadataEncryptionKey do not need to be derived everytime!
ENPeriodMetadataEncryptionKey periodMetadataEncryptionKey;
ENPeriodIdentifierKey pik;
ENIntervalIdentifier intervalIdentifier;
en_derive_period_identifier_key(&pik, &tek.tek);
en_derive_interval_identifier(&intervalIdentifier, &pik, currentInterval);
associated_encrypted_metadata_t encryptedMetadata;
en_derive_period_metadata_encryption_key(&periodMetadataEncryptionKey, &tek.tek);
en_encrypt_interval_metadata(&periodMetadataEncryptionKey, &intervalIdentifier, (unsigned char*)&bt_metadata, (unsigned char*)&encryptedMetadata, sizeof(associated_encrypted_metadata_t));
// broadcast intervalIdentifier plus encryptedMetada according to specs
//printk("\n----------------------------------------\n\n");
printk("Time: %u, ", currentTime);
printk("Interval: %u, ", currentInterval);
printk("TEK: ");
print_rpi((ENIntervalIdentifier *)&tek.tek);
printk(", ");
printk("RPI: ");
print_rpi((ENIntervalIdentifier *)&intervalIdentifier);
printk(", ");
printk("AEM: ");
print_aem(&encryptedMetadata);
printk("\n");
memcpy(&covid_adv_svd.rolling_proximity_identifier, &intervalIdentifier, sizeof(ENIntervalIdentifier));
memcpy(&covid_adv_svd.associated_encrypted_metadata, &encryptedMetadata, sizeof(associated_encrypted_metadata_t));
return 0;
}
static const struct bt_le_scan_param scan_param = {
.type = BT_HCI_LE_SCAN_PASSIVE,
.options = BT_LE_SCAN_OPT_FILTER_DUPLICATE,
.interval = 0x0010, //Scan Interval (N * 0.625 ms), TODO: set to correct interval
.window = 0x0010, //Scan Window (N * 0.625 ms), TODO: set to correct interval
};
static void scan_cb(const bt_addr_le_t *addr, int8_t rssi, uint8_t adv_type, struct net_buf_simple *buf)
{
@ -86,7 +200,7 @@ static void scan_cb(const bt_addr_le_t *addr, int8_t rssi, uint8_t adv_type, str
covid_adv_svd_t *rx_adv = (covid_adv_svd_t *)buf->data;
if (rx_adv->ens == COVID_ENS)
{
printk("Attempting to store record...\n");
//printk("Attempting to store record...\n");
record_t record;
uint32_t timestamp = time_get_unix_seconds();
memcpy(&record.rssi, &rssi, sizeof(record.rssi));
@ -94,7 +208,9 @@ static void scan_cb(const bt_addr_le_t *addr, int8_t rssi, uint8_t adv_type, str
memcpy(&record.rolling_proximity_identifier, &rx_adv->rolling_proximity_identifier, sizeof(record.rolling_proximity_identifier));
memcpy(&record.timestamp, &timestamp, sizeof(record.timestamp));
int rc = add_record(&record);
printk("Record stored (err %d)\n", rc);
if (rc != 0) {
printk("ERROR: Storing record failed (err %d)\n", rc);
}
}
}
net_buf_simple_pull(buf, len - 1); //consume the rest, note we already consumed one byte via net_buf_simple_pull_u8(buf)
@ -102,238 +218,50 @@ static void scan_cb(const bt_addr_le_t *addr, int8_t rssi, uint8_t adv_type, str
}
}
#define NUM_PERIOD_KEYS (14)
static period_t periods[NUM_PERIOD_KEYS];
static int current_period_index = 0;
static ENIntervalNumber currentInterval;
static unsigned int period_cnt = 0;
static ENPeriodMetadataEncryptionKey periodMetadataEncryptionKey;
static ENIntervalIdentifier intervalIdentifier;
static associated_encrypted_metadata_t encryptedMetadata;
static bool init = 1;
static bool infected = 0;
static void test_against_fixtures(void)
{
// First define base values
ENIntervalNumber intervalNumber = 2642976;
ENPeriodKey periodKey = {.b = {0x75, 0xc7, 0x34, 0xc6, 0xdd, 0x1a, 0x78, 0x2d, 0xe7, 0xa9, 0x65, 0xda, 0x5e, 0xb9, 0x31, 0x25}};
unsigned char metadata[4] = {0x40, 0x08, 0x00, 0x00};
// define the expected values
ENPeriodIdentifierKey expectedPIK = {.b = {0x18, 0x5a, 0xd9, 0x1d, 0xb6, 0x9e, 0xc7, 0xdd, 0x04, 0x89, 0x60, 0xf1, 0xf3, 0xba, 0x61, 0x75}};
ENPeriodMetadataEncryptionKey expectedPMEK = {.b = {0xd5, 0x7c, 0x46, 0xaf, 0x7a, 0x1d, 0x83, 0x96, 0x5b, 0x9b, 0xed, 0x8b, 0xd1, 0x52, 0x93, 0x6a}};
ENIntervalIdentifier expectedIntervalIdentifier = {.b = {0x8b, 0xe6, 0xcd, 0x37, 0x1c, 0x5c, 0x89, 0x16, 0x04, 0xbf, 0xbe, 0x49, 0xdf, 0x84, 0x50, 0x96}};
unsigned char expectedEncryptedMetadata[4] = {0x72, 0x03, 0x38, 0x74};
ENPeriodIdentifierKey pik;
en_derive_period_identifier_key(&pik, &periodKey);
printk("expectedPIK: ");
print_key(&expectedPIK);
printk(", ");
printk("actualPIK: ");
print_key(&pik);
printk(", ");
ENIntervalIdentifier intervalIdentifier;
en_derive_interval_identifier(&intervalIdentifier, &pik, intervalNumber);
printk("expectedRPI: ");
print_key(&expectedIntervalIdentifier);
printk(", ");
printk("actualRPI: ");
print_key(&intervalIdentifier);
printk(", ");
/*ENPeriodMetadataEncryptionKey pmek;
en_derive_period_metadata_encryption_key(&pmek, &periodKey);
TEST_ASSERT_EQUAL_KEY(expectedPMEK, pmek);
unsigned char encryptedMetadata[sizeof(metadata)] = {0};
en_encrypt_interval_metadata(&pmek, &intervalIdentifier, metadata, encryptedMetadata, sizeof(metadata));
TEST_ASSERT_EQUAL_CHAR_ARRAY(expectedEncryptedMetadata, encryptedMetadata, sizeof(expectedEncryptedMetadata));*/
}
static void new_period_key(time_t currentTime)
{
#ifndef NATIVE_POSIX
printk("\n----------------------------------------\n\n");
printk("\n----------------------------------------\n\n");
printk("*** New Period\n");
current_period_index = period_cnt % NUM_PERIOD_KEYS;
periods[current_period_index].periodInterval = en_get_interval_number_at_period_start(currentTime);
printk("periodInterval %u\n", periods[current_period_index].periodInterval);
en_generate_period_key(&periods[current_period_index].periodKey);
period_cnt++;
#endif
}
//To be called when new keys are needed
static void check_keys(struct k_work *work)
{
// we check the current time to know if we actually need to regenerate anything
// TODO: Use real unix timestamp!: currentTime = time(NULL);
uint32_t currentTime = time_get_unix_seconds();
ENIntervalNumber newInterval = en_get_interval_number(currentTime);
if (currentInterval != newInterval || init)
{
currentInterval = newInterval;
bool newPeriod = ((currentInterval - periods[current_period_index].periodInterval) >= EN_TEK_ROLLING_PERIOD);
// we check if we need to generate new keys
if (newPeriod || init)
{
new_period_key(currentTime);
}
// we now generate the new interval identifier and re-encrypt the metadata
// TODO: The period identifier key does not need to be derived everytime!
ENPeriodIdentifierKey pik;
en_derive_period_identifier_key(&pik, &periods[current_period_index].periodKey);
en_derive_interval_identifier(&intervalIdentifier, &pik, currentInterval);
en_derive_period_metadata_encryption_key(&periodMetadataEncryptionKey, &periods[current_period_index].periodKey);
en_encrypt_interval_metadata(&periodMetadataEncryptionKey, &intervalIdentifier, (unsigned char*)&bt_metadata, (unsigned char*)&encryptedMetadata, sizeof(associated_encrypted_metadata_t));
// broadcast intervalIdentifier plus encryptedMetada according to specs
//printk("\n----------------------------------------\n\n");
printk("Time: %u, ", currentTime);
printk("Interval: %u, ", currentInterval);
printk("TEK: ");
print_rpi((ENIntervalIdentifier *)&periods[current_period_index].periodKey);
printk(", ");
printk("RPI: ");
print_rpi((ENIntervalIdentifier *)&intervalIdentifier);
printk(", ");
printk("AEM: ");
print_aem(&encryptedMetadata);
printk("\n");
// lock, so we can be sure to only advertise correct packages
k_mutex_lock(&key_change_lock, K_FOREVER);
memcpy(&covid_adv_svd.rolling_proximity_identifier, &intervalIdentifier, sizeof(ENIntervalIdentifier));
memcpy(&covid_adv_svd.associated_encrypted_metadata, &encryptedMetadata, sizeof(associated_encrypted_metadata_t));
k_mutex_unlock(&key_change_lock);
init = 0;
}
}
K_WORK_DEFINE(my_work, check_keys);
static void my_timer_handler(struct k_timer *dummy)
{
k_work_submit(&my_work);
}
K_TIMER_DEFINE(my_timer, my_timer_handler, NULL);
static const struct bt_le_scan_param scan_param = {
.type = BT_HCI_LE_SCAN_PASSIVE,
.options = BT_LE_SCAN_OPT_FILTER_DUPLICATE,
.interval = 0x0010, //Scan Interval (N * 0.625 ms), TODO: set to correct interval
.window = 0x0010, //Scan Window (N * 0.625 ms), TODO: set to correct interval
};
#define KEY_CHECK_INTERVAL (K_MSEC(EN_INTERVAL_LENGTH * 1000 / 10))
int tracing_init()
{
#if COVID_MEASURE_PERFORMANCE
measure_performance();
#endif
// TODO: Use real unix timestamp!: currentTime = time(NULL);
init = 1;
period_cnt = 0;
infected = 0;
test_against_fixtures();
check_keys(NULL);
int on_scan() {
uint32_t num_devs = get_num_records();
printk("Scanning for devices...\n");
int err = 0;
#if CONFIG_BT
err = bt_le_scan_start(&scan_param, scan_cb);
#endif
if (err)
{
printk("Starting scanning failed (err %d)\n", err);
return err;
}
k_mutex_init(&key_change_lock);
k_sleep(K_MSEC(SCAN_DURATION_MS)); // TODO: what to put here?
k_timer_start(&my_timer, KEY_CHECK_INTERVAL, KEY_CHECK_INTERVAL);
err = bt_le_scan_stop();
if (err)
{
printk("Stopping scan failed (err %d)\n", err);
return err;
}
printk("Scanning done... %u devices found\n", get_num_records()-num_devs);
return 0;
}
int tracing_run()
{
//printk("covid start\n");
int on_adv() {
int err = 0;
#if CONFIG_BT
k_mutex_lock(&key_change_lock, K_FOREVER);
err = bt_le_adv_start(BT_LE_ADV_NCONN, ad, ARRAY_SIZE(ad), NULL, 0);
#endif
if (err)
{
printk("Advertising failed to start (err %d)\n", err);
return err;
}
k_sleep(K_SECONDS(10));
k_sleep(K_MSEC(ADV_DURATION_MS)); // TODO: what to put here?
#if CONFIG_BT
err = bt_le_adv_stop();
#endif
k_mutex_unlock(&key_change_lock);
if (err)
{
printk("Advertising failed to stop (err %d)\n", err);
return err;
}
//printk("covid end\n");
return 0;
}
bool get_infection()
{
return infected;
}
void set_infection(bool _infected)
{
infected = _infected;
}
unsigned int get_period_cnt_if_infected()
{
if (!infected)
{
return 0;
}
return period_cnt;
}
period_t *get_period_if_infected(unsigned int id, size_t *size)
{
if (!infected || id >= NUM_PERIOD_KEYS || id >= period_cnt)
{
*size = 0;
return NULL;
}
*size = sizeof(period_t);
return &periods[id];
}