2020-06-08 11:15:05 +02:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2020 Olaf Landsiedel
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <zephyr/types.h>
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <sys/printk.h>
|
|
|
|
#include <sys/util.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include <bluetooth/bluetooth.h>
|
|
|
|
#include <bluetooth/hci.h>
|
|
|
|
|
|
|
|
#include "exposure-notification.h"
|
|
|
|
#include "covid_types.h"
|
|
|
|
#include "contacts.h"
|
|
|
|
#include "covid.h"
|
2021-04-21 17:58:16 +02:00
|
|
|
#include "ens/storage.h"
|
2020-06-08 11:15:05 +02:00
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
#ifndef COVID_MEASURE_PERFORMANCE
|
|
|
|
#define COVID_MEASURE_PERFORMANCE 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
typedef struct covid_adv_svd
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
uint16_t ens;
|
|
|
|
rolling_proximity_identifier_t rolling_proximity_identifier;
|
|
|
|
associated_encrypted_metadata_t associated_encrypted_metadata;
|
2020-11-19 16:56:33 +01:00
|
|
|
} __packed covid_adv_svd_t;
|
2020-06-08 11:15:05 +02:00
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
const static bt_metadata_t bt_metadata = {
|
2020-06-08 11:15:05 +02:00
|
|
|
.version = 0b00100000,
|
|
|
|
.tx_power = 0, //TODO set to actual transmit power
|
|
|
|
.rsv1 = 0,
|
|
|
|
.rsv2 = 0,
|
|
|
|
};
|
|
|
|
|
|
|
|
#define COVID_ENS (0xFD6F)
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
static covid_adv_svd_t covid_adv_svd = {
|
2020-06-08 11:15:05 +02:00
|
|
|
.ens = COVID_ENS,
|
|
|
|
//do not initialiuze the rest of the packet, will write this later
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct bt_data ad[] = {
|
2020-11-19 16:56:33 +01:00
|
|
|
BT_DATA_BYTES(BT_DATA_FLAGS, (BT_LE_AD_GENERAL | BT_LE_AD_NO_BREDR)),
|
|
|
|
BT_DATA_BYTES(BT_DATA_UUID16_ALL, 0x6f, 0xfd), //0xFD6F Exposure Notification Service
|
|
|
|
BT_DATA(BT_DATA_SVC_DATA16, &covid_adv_svd, sizeof(covid_adv_svd_t))};
|
2020-06-08 11:15:05 +02:00
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
static void scan_cb(const bt_addr_le_t *addr, int8_t rssi, uint8_t adv_type, struct net_buf_simple *buf)
|
2020-06-08 11:15:05 +02:00
|
|
|
{
|
2020-11-19 16:56:33 +01:00
|
|
|
if (adv_type == 3)
|
|
|
|
{
|
2020-06-12 12:25:31 +02:00
|
|
|
uint8_t len = 0;
|
2020-06-08 11:15:05 +02:00
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
while (buf->len > 1)
|
|
|
|
{
|
2020-06-12 12:25:31 +02:00
|
|
|
uint8_t type;
|
2020-06-08 11:15:05 +02:00
|
|
|
|
|
|
|
len = net_buf_simple_pull_u8(buf);
|
2020-11-19 16:56:33 +01:00
|
|
|
if (!len)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* Check if field length is correct */
|
2020-11-19 16:56:33 +01:00
|
|
|
if (len > buf->len || buf->len < 1)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
type = net_buf_simple_pull_u8(buf);
|
2020-11-19 16:56:33 +01:00
|
|
|
if (type == BT_DATA_SVC_DATA16 && len == sizeof(covid_adv_svd_t) + 1)
|
|
|
|
{
|
|
|
|
covid_adv_svd_t *rx_adv = (covid_adv_svd_t *)buf->data;
|
|
|
|
if (rx_adv->ens == COVID_ENS)
|
|
|
|
{
|
2021-04-21 17:58:16 +02:00
|
|
|
printk("Attempting to store contact...\n");
|
|
|
|
record_t contact;
|
|
|
|
uint32_t timestamp = k_uptime_get() / 1000;
|
|
|
|
memcpy(&contact.rssi, &rssi, sizeof(contact.rssi));
|
|
|
|
memcpy(&contact.associated_encrypted_metadata, &rx_adv->associated_encrypted_metadata, sizeof(contact.associated_encrypted_metadata));
|
|
|
|
memcpy(&contact.rolling_proximity_identifier, &rx_adv->rolling_proximity_identifier, sizeof(contact.rolling_proximity_identifier));
|
|
|
|
memcpy(&contact.timestamp, ×tamp, sizeof(contact.timestamp));
|
|
|
|
int rc = add_contact(&contact);
|
|
|
|
printk("Contact stored (err %d)\n", rc);
|
2020-06-08 11:15:05 +02:00
|
|
|
}
|
|
|
|
}
|
2020-11-19 16:56:33 +01:00
|
|
|
net_buf_simple_pull(buf, len - 1); //consume the rest, note we already consumed one byte via net_buf_simple_pull_u8(buf)
|
2020-06-08 11:15:05 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define NUM_PERIOD_KEYS (14)
|
|
|
|
static period_t periods[NUM_PERIOD_KEYS];
|
|
|
|
|
|
|
|
static int current_period_index = 0;
|
|
|
|
static ENIntervalNumber currentInterval;
|
|
|
|
static unsigned int period_cnt = 0;
|
|
|
|
|
|
|
|
static ENPeriodMetadataEncryptionKey periodMetadataEncryptionKey;
|
|
|
|
static ENIntervalIdentifier intervalIdentifier;
|
|
|
|
static associated_encrypted_metadata_t encryptedMetadata;
|
|
|
|
|
|
|
|
static bool init = 1;
|
|
|
|
static bool infected = 0;
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
static void test_against_fixtures(void)
|
|
|
|
{
|
|
|
|
// First define base values
|
|
|
|
ENIntervalNumber intervalNumber = 2642976;
|
|
|
|
ENPeriodKey periodKey = {.b = {0x75, 0xc7, 0x34, 0xc6, 0xdd, 0x1a, 0x78, 0x2d, 0xe7, 0xa9, 0x65, 0xda, 0x5e, 0xb9, 0x31, 0x25}};
|
2021-05-02 21:35:58 +02:00
|
|
|
unsigned char metadata[4] = {0x40, 0x08, 0x00, 0x00};
|
2020-09-13 20:42:20 +02:00
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
// define the expected values
|
|
|
|
ENPeriodIdentifierKey expectedPIK = {.b = {0x18, 0x5a, 0xd9, 0x1d, 0xb6, 0x9e, 0xc7, 0xdd, 0x04, 0x89, 0x60, 0xf1, 0xf3, 0xba, 0x61, 0x75}};
|
2021-05-02 21:35:58 +02:00
|
|
|
ENPeriodMetadataEncryptionKey expectedPMEK = {.b = {0xd5, 0x7c, 0x46, 0xaf, 0x7a, 0x1d, 0x83, 0x96, 0x5b, 0x9b, 0xed, 0x8b, 0xd1, 0x52, 0x93, 0x6a}};
|
2020-09-13 20:42:20 +02:00
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
ENIntervalIdentifier expectedIntervalIdentifier = {.b = {0x8b, 0xe6, 0xcd, 0x37, 0x1c, 0x5c, 0x89, 0x16, 0x04, 0xbf, 0xbe, 0x49, 0xdf, 0x84, 0x50, 0x96}};
|
2021-05-02 21:35:58 +02:00
|
|
|
unsigned char expectedEncryptedMetadata[4] = {0x72, 0x03, 0x38, 0x74};
|
2020-09-13 20:42:20 +02:00
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
ENPeriodIdentifierKey pik;
|
|
|
|
en_derive_period_identifier_key(&pik, &periodKey);
|
2020-09-13 20:42:20 +02:00
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
printk("expectedPIK: ");
|
|
|
|
print_key(&expectedPIK);
|
|
|
|
printk(", ");
|
|
|
|
printk("actualPIK: ");
|
|
|
|
print_key(&pik);
|
|
|
|
printk(", ");
|
2020-09-13 20:42:20 +02:00
|
|
|
|
|
|
|
ENIntervalIdentifier intervalIdentifier;
|
2020-11-19 16:56:33 +01:00
|
|
|
en_derive_interval_identifier(&intervalIdentifier, &pik, intervalNumber);
|
2020-09-13 20:42:20 +02:00
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
printk("expectedRPI: ");
|
|
|
|
print_key(&expectedIntervalIdentifier);
|
|
|
|
printk(", ");
|
|
|
|
printk("actualRPI: ");
|
|
|
|
print_key(&intervalIdentifier);
|
|
|
|
printk(", ");
|
2020-09-13 20:42:20 +02:00
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
/*ENPeriodMetadataEncryptionKey pmek;
|
2020-09-13 20:42:20 +02:00
|
|
|
en_derive_period_metadata_encryption_key(&pmek, &periodKey);
|
|
|
|
TEST_ASSERT_EQUAL_KEY(expectedPMEK, pmek);
|
|
|
|
|
|
|
|
unsigned char encryptedMetadata[sizeof(metadata)] = {0};
|
|
|
|
en_encrypt_interval_metadata(&pmek, &intervalIdentifier, metadata, encryptedMetadata, sizeof(metadata));
|
|
|
|
TEST_ASSERT_EQUAL_CHAR_ARRAY(expectedEncryptedMetadata, encryptedMetadata, sizeof(expectedEncryptedMetadata));*/
|
|
|
|
}
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
static void new_period_key(time_t currentTime)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
printk("\n----------------------------------------\n\n");
|
|
|
|
printk("\n----------------------------------------\n\n");
|
|
|
|
printk("*** New Period\n");
|
|
|
|
current_period_index = period_cnt % NUM_PERIOD_KEYS;
|
|
|
|
periods[current_period_index].periodInterval = en_get_interval_number_at_period_start(currentTime);
|
|
|
|
printk("periodInterval %u\n", periods[current_period_index].periodInterval);
|
|
|
|
en_generate_period_key(&periods[current_period_index].periodKey);
|
|
|
|
period_cnt++;
|
|
|
|
}
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
#if COVID_MEASURE_PERFORMANCE
|
|
|
|
static void measure_performance()
|
|
|
|
{
|
|
|
|
|
|
|
|
u32_t runs = 100;
|
|
|
|
u32_t start_time;
|
|
|
|
u32_t cycles_spent;
|
|
|
|
u32_t nanoseconds_spent;
|
|
|
|
|
|
|
|
ENPeriodKey pk;
|
|
|
|
|
|
|
|
ENPeriodIdentifierKey pik;
|
|
|
|
ENIntervalIdentifier intervalIdentifier;
|
|
|
|
ENIntervalNumber intervalNumber = 2642976;
|
|
|
|
ENIntervalIdentifier id;
|
|
|
|
ENPeriodMetadataEncryptionKey pmek;
|
|
|
|
unsigned char metadata[4] = {0x40, 0x08, 0x00, 0x00};
|
|
|
|
unsigned char encryptedMetadata[sizeof(metadata)] = {0};
|
|
|
|
|
|
|
|
printk("\n----------------------------------------\n");
|
|
|
|
printk("MEASURING PERFORMANCE\n");
|
|
|
|
|
|
|
|
// Measure en_generate_period_key
|
|
|
|
{
|
|
|
|
start_time = k_cycle_get_32();
|
|
|
|
|
|
|
|
for (int i = 0; i < runs; i++)
|
|
|
|
{
|
|
|
|
en_generate_period_key(&pk);
|
|
|
|
}
|
|
|
|
|
|
|
|
nanoseconds_spent = SYS_CLOCK_HW_CYCLES_TO_NS(k_cycle_get_32() - start_time);
|
|
|
|
printk("en_generate_period_key %d ns\n", nanoseconds_spent/runs);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Measure en_derive_period_identifier_key
|
|
|
|
{
|
|
|
|
start_time = k_cycle_get_32();
|
|
|
|
|
|
|
|
for (int i = 0; i < runs; i++)
|
|
|
|
{
|
|
|
|
en_derive_period_identifier_key(&pik, &pk);
|
|
|
|
}
|
|
|
|
|
|
|
|
nanoseconds_spent = SYS_CLOCK_HW_CYCLES_TO_NS(k_cycle_get_32() - start_time);
|
|
|
|
printk("en_derive_period_identifier_key %d ns\n", nanoseconds_spent/runs);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Measure en_derive_interval_identifier
|
|
|
|
{
|
|
|
|
start_time = k_cycle_get_32();
|
|
|
|
|
|
|
|
for (int i = 0; i < runs; i++)
|
|
|
|
{
|
|
|
|
en_derive_interval_identifier(&intervalIdentifier, &pik, intervalNumber);
|
|
|
|
}
|
|
|
|
|
|
|
|
nanoseconds_spent = SYS_CLOCK_HW_CYCLES_TO_NS(k_cycle_get_32() - start_time);
|
|
|
|
printk("en_derive_interval_identifier %d ns\n", nanoseconds_spent/runs);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Measure en_derive_period_metadata_encryption_key
|
|
|
|
{
|
|
|
|
start_time = k_cycle_get_32();
|
|
|
|
|
|
|
|
for (int i = 0; i < runs; i++)
|
|
|
|
{
|
|
|
|
en_derive_period_metadata_encryption_key(&pmek, &pk);
|
|
|
|
}
|
|
|
|
|
|
|
|
nanoseconds_spent = SYS_CLOCK_HW_CYCLES_TO_NS(k_cycle_get_32() - start_time);
|
|
|
|
printk("en_derive_period_metadata_encryption_key %d ns\n", nanoseconds_spent/runs);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Measure en_encrypt_interval_metadata
|
|
|
|
{
|
|
|
|
start_time = k_cycle_get_32();
|
|
|
|
|
|
|
|
for (int i = 0; i < runs; i++)
|
|
|
|
{
|
|
|
|
en_encrypt_interval_metadata(&pmek, &intervalIdentifier, metadata, encryptedMetadata, sizeof(metadata));
|
|
|
|
}
|
|
|
|
|
|
|
|
nanoseconds_spent = SYS_CLOCK_HW_CYCLES_TO_NS(k_cycle_get_32() - start_time);
|
|
|
|
printk("en_encrypt_interval_metadata %d ns\n", nanoseconds_spent/runs);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Measure Full key generation
|
|
|
|
{
|
|
|
|
start_time = k_cycle_get_32();
|
|
|
|
|
|
|
|
for (int i = 0; i < runs; i++)
|
|
|
|
{
|
|
|
|
ENPeriodKey pk;
|
|
|
|
en_generate_period_key(&pk);
|
|
|
|
ENPeriodIdentifierKey ik;
|
|
|
|
en_derive_period_identifier_key(&ik, &pk);
|
|
|
|
|
|
|
|
for(int iv = 0; iv < EN_TEK_ROLLING_PERIOD; iv++) {
|
|
|
|
ENIntervalNumber intervalNumber = en_get_interval_number(iv);
|
|
|
|
ENIntervalIdentifier id;
|
|
|
|
en_derive_interval_identifier(&id, &ik, intervalNumber);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
nanoseconds_spent = SYS_CLOCK_HW_CYCLES_TO_NS(k_cycle_get_32() - start_time);
|
|
|
|
printk("Full key generation %d ns\n", nanoseconds_spent/runs);
|
|
|
|
}
|
|
|
|
|
|
|
|
printk("\FINISHED\n");
|
|
|
|
printk("----------------------------------------\n\n");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2020-06-08 11:15:05 +02:00
|
|
|
//To be called when new keys are needed
|
2020-11-19 16:56:33 +01:00
|
|
|
static void check_keys(struct k_work *work)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
|
|
|
|
// we check the current time to know if we actually need to regenerate anything
|
|
|
|
// TODO: Use real unix timestamp!: currentTime = time(NULL);
|
|
|
|
time_t currentTime = k_uptime_get() / 1000;
|
|
|
|
ENIntervalNumber newInterval = en_get_interval_number(currentTime);
|
2020-11-19 16:56:33 +01:00
|
|
|
if (currentInterval != newInterval || init)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
currentInterval = newInterval;
|
|
|
|
bool newPeriod = ((currentInterval - periods[current_period_index].periodInterval) >= EN_TEK_ROLLING_PERIOD);
|
|
|
|
// we check if we need to generate new keys
|
2020-11-19 16:56:33 +01:00
|
|
|
if (newPeriod || init)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
new_period_key(currentTime);
|
|
|
|
}
|
|
|
|
|
|
|
|
// we now generate the new interval identifier and re-encrypt the metadata
|
2020-12-09 11:13:51 +01:00
|
|
|
// TODO: The period identifier key does not need to be derived everytime!
|
|
|
|
ENPeriodIdentifierKey pik;
|
|
|
|
en_derive_period_identifier_key(&pik, &periods[current_period_index].periodKey);
|
|
|
|
en_derive_interval_identifier(&intervalIdentifier, &pik, currentInterval);
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
en_derive_period_metadata_encryption_key(&periodMetadataEncryptionKey, &periods[current_period_index].periodKey);
|
2020-12-09 11:13:51 +01:00
|
|
|
en_encrypt_interval_metadata(&periodMetadataEncryptionKey, &intervalIdentifier, (unsigned char*)&bt_metadata, (unsigned char*)&encryptedMetadata, sizeof(associated_encrypted_metadata_t));
|
|
|
|
|
2020-06-08 11:15:05 +02:00
|
|
|
|
|
|
|
// broadcast intervalIdentifier plus encryptedMetada according to specs
|
|
|
|
//printk("\n----------------------------------------\n\n");
|
|
|
|
printk("Time: %llu, ", currentTime);
|
|
|
|
printk("Interval: %u, ", currentInterval);
|
2020-11-19 16:56:33 +01:00
|
|
|
printk("TEK: ");
|
|
|
|
print_rpi((rolling_proximity_identifier_t *)&periods[current_period_index].periodKey);
|
|
|
|
printk(", ");
|
|
|
|
printk("RPI: ");
|
|
|
|
print_rpi((rolling_proximity_identifier_t *)&intervalIdentifier);
|
|
|
|
printk(", ");
|
|
|
|
printk("AEM: ");
|
|
|
|
print_aem(&encryptedMetadata);
|
|
|
|
printk("\n");
|
2020-06-08 11:15:05 +02:00
|
|
|
|
|
|
|
//TODO do we have to worry about race conditions here?
|
|
|
|
//worst case: we would be advertising a wrong key for a while
|
|
|
|
memcpy(&covid_adv_svd.rolling_proximity_identifier, &intervalIdentifier, sizeof(rolling_proximity_identifier_t));
|
|
|
|
memcpy(&covid_adv_svd.associated_encrypted_metadata, &encryptedMetadata, sizeof(associated_encrypted_metadata_t));
|
|
|
|
|
|
|
|
init = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
K_WORK_DEFINE(my_work, check_keys);
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
static void my_timer_handler(struct k_timer *dummy)
|
|
|
|
{
|
|
|
|
k_work_submit(&my_work);
|
2020-06-08 11:15:05 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
K_TIMER_DEFINE(my_timer, my_timer_handler, NULL);
|
|
|
|
|
|
|
|
static const struct bt_le_scan_param scan_param = {
|
2020-11-19 16:56:33 +01:00
|
|
|
.type = BT_HCI_LE_SCAN_PASSIVE,
|
2021-04-23 15:23:56 +02:00
|
|
|
.options = BT_LE_SCAN_OPT_FILTER_DUPLICATE,
|
2020-11-19 16:56:33 +01:00
|
|
|
.interval = 0x0010, //Scan Interval (N * 0.625 ms), TODO: set to correct interval
|
|
|
|
.window = 0x0010, //Scan Window (N * 0.625 ms), TODO: set to correct interval
|
2020-06-08 11:15:05 +02:00
|
|
|
};
|
|
|
|
|
|
|
|
#define KEY_CHECK_INTERVAL (K_MSEC(EN_INTERVAL_LENGTH * 1000 / 10))
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
int init_covid()
|
|
|
|
{
|
|
|
|
|
|
|
|
#if COVID_MEASURE_PERFORMANCE
|
|
|
|
measure_performance();
|
|
|
|
#endif
|
2020-09-13 20:42:20 +02:00
|
|
|
|
2020-06-08 11:15:05 +02:00
|
|
|
// TODO: Use real unix timestamp!: currentTime = time(NULL);
|
|
|
|
init = 1;
|
|
|
|
period_cnt = 0;
|
|
|
|
infected = 0;
|
2020-09-13 20:42:20 +02:00
|
|
|
|
|
|
|
test_against_fixtures();
|
|
|
|
|
2020-06-08 11:15:05 +02:00
|
|
|
check_keys(NULL);
|
|
|
|
|
|
|
|
int err = 0;
|
|
|
|
err = bt_le_scan_start(&scan_param, scan_cb);
|
2020-11-19 16:56:33 +01:00
|
|
|
if (err)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
printk("Starting scanning failed (err %d)\n", err);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
k_timer_start(&my_timer, KEY_CHECK_INTERVAL, KEY_CHECK_INTERVAL);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
int do_covid()
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
//printk("covid start\n");
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
int err = 0;
|
2020-06-08 11:15:05 +02:00
|
|
|
err = bt_le_adv_start(BT_LE_ADV_NCONN, ad, ARRAY_SIZE(ad), NULL, 0);
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
if (err)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
printk("Advertising failed to start (err %d)\n", err);
|
|
|
|
return err;
|
2020-11-19 16:56:33 +01:00
|
|
|
}
|
|
|
|
|
2020-06-08 11:15:05 +02:00
|
|
|
k_sleep(K_SECONDS(10));
|
|
|
|
|
|
|
|
err = bt_le_adv_stop();
|
2020-11-19 16:56:33 +01:00
|
|
|
if (err)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
printk("Advertising failed to stop (err %d)\n", err);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
//printk("covid end\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
bool get_infection()
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
return infected;
|
|
|
|
}
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
void set_infection(bool _infected)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
infected = _infected;
|
|
|
|
}
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
unsigned int get_period_cnt_if_infected()
|
|
|
|
{
|
|
|
|
if (!infected)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return period_cnt;
|
|
|
|
}
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
period_t *get_period_if_infected(unsigned int id, size_t *size)
|
|
|
|
{
|
|
|
|
if (!infected || id >= NUM_PERIOD_KEYS || id >= period_cnt)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
*size = 0;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
*size = sizeof(period_t);
|
|
|
|
return &periods[id];
|
|
|
|
}
|
|
|
|
|
2020-11-19 16:56:33 +01:00
|
|
|
int get_index_by_interval(ENIntervalNumber periodInterval)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
int index = 0;
|
2020-11-19 16:56:33 +01:00
|
|
|
while (index < NUM_PERIOD_KEYS || index < period_cnt)
|
|
|
|
{
|
|
|
|
if (periods[index].periodInterval == periodInterval)
|
|
|
|
{
|
2020-06-08 11:15:05 +02:00
|
|
|
return index;
|
|
|
|
}
|
|
|
|
index++;
|
|
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|