1
0
mirror of synced 2025-01-04 19:01:44 +01:00

More documentation

This commit is contained in:
Christian Dietrich 2014-10-09 18:15:27 +02:00
parent a1ef38622f
commit ce17612146
5 changed files with 90 additions and 6 deletions

View File

@ -1,6 +1,6 @@
export TEXINPUTS := $(shell pwd)//:${TEXINPUTS}
doc:
source/avremu.pdf:
cd source; latexmk -pdf -shell-escape avremu
test: test-simple
@ -12,4 +12,24 @@ test-simple: source/simple-testsuite.tex
test-%: source/test-suite/%.c
cd source/test-suite; ./test-suite single $(shell basename $<)
.PHONY: test-simple doc
avremu.zip: source/avremu.pdf
rm -rf avremu avremu.zip
mkdir avremu
# TeX Directory
mkdir -p avremu/tex/latex/avremu
cp tex/latex/avremu/*.tex avremu/tex/latex/avremu
cp tex/latex/avremu/*.sty avremu/tex/latex/avremu
# Source directory
mkdir -p avremu/source/latex/avremu
cp -r imgs avremu/source/latex/avremu
mkdir -p avremu/source/latex/avremu/test-suite
cp source/test-suite/*.c avremu/source/latex/avremu/test-suite
cp source/simple-testsuite.tex avremu/source/latex/avremu/
# Documenation directory
mkdir -p avremu/doc/latex/avremu
cp source/avremu.pdf avremu/doc/latex/avremu
zip -r avremu.zip avremu
rm -rf avremu
.PHONY: test-simple source/avremu.pdf avremu.zip

View File

@ -9,7 +9,7 @@ programming language. TeX can compute anything, that is
computable. Computeability is a concept from theoretical computer
science. After visiting a theoretical CS course, you will know that
there are things that cannot be solved by a machine. Never. Look out
for the halting machine. So, Turing-complete does not say "It's a
for the halting problem. So, Turing-complete does not say "It's a
proper programming language", but more "someone can write a proper
interpreter for any programming language in it, theoretically".
@ -28,6 +28,8 @@ future, if you start this. But, we can use a normal C compiler to
compile the C code to some simple platform. Like AVR[4]. Since I have
other things to do than writing an AVR Emulator in TeX, here it is!
The newest source can be found at https://gitlab.brokenpipe.de/stettberger/avr_tex.
## You are writing an CPU emulator in TeX, the TYPESETTING system? ##
Yep.

View File

@ -4,6 +4,13 @@
\usepackage{hyperref}
\usepackage{filecontents}
\usepackage{tcolorbox}
\usepackage{ydoc}
\makeatletter
\def\cmd#1{\cs{\expandafter\cmd@to@cs\string#1}}
\def\cmd@to@cs#1#2{\char\number`#2\relax}
\DeclareRobustCommand\cs[1]{\texttt{\char`\\#1}}
\makeatother
\begin{filecontents*}{hello-world.c}
#include <avr/io.h>
@ -22,7 +29,8 @@ main(void)
\title{The \texttt{avremu} Package}
\author{Christian Dietrich\\
\url{stettberger@dokucode.de}}
\url{stettberger@dokucode.de}\\
\url{https://gitlab.brokenpipe.de/stettberger/avr_tex}}
\begin{document}
@ -42,6 +50,60 @@ UDR='\avrUDR' in \avrinstrcount\ instructions
UDR='\avrUDR' in \avrinstrcount\ instructions
\end{tcolorbox}
\LaTeX\ is known as a typesetting system. But the underlying \TeX\ system is a powerful macro
processor. In fact, TeX is a Turing-complete programming language. \TeX\ can compute anything that
is computable. Computeability is a concept from theoretical computer science. After visiting a
theoretical computer-science course, you will know that there are things that cannot be solved by a
machine. Never. Look out for the halting problem.
This package does contain an \emph{CPU emulator} for the 8-bit microcontroller platform Atmel AVR, more
precisely it implements the instruction-set architecture of the \texttt{ATmega8}.
\section{Provided Commands}
\DescribeMacro{\avrloadihex}{\meta{filename}}
Load an Intel HEX formatted image of the flash into the code memory of the AVR
emulator. Additionally the state of the AVR emulator is set back to zero.
\DescribeMacro{\avrloadc}[\meta{compiler options}]{\meta{filename}}
Requires \verb|--shell-escape|. Compiles C source code file with \verb|avr-gcc| and the given
compiler options. The default compiler option set is \verb|-mmcu=atmega8 -Os|. The resulting
\texttt{.elf} file is transformed to an Intel HEX file and loaded into the code memory of the
emulator.
\DescribeMacro{\avrrun}
Run the emulator until a \textbf{break} instruction occurs.
\DescribeMacro{\avrstep}[\meta{steps}=1]
Run the emulator for N instructions. The default is a single step. The stepping does automatically
end, if a \textbf{break} instruction is executed.
\DescribeMacro{\avrinstrcount}
Expands to the number of executed instructions.
\DescribeMacro{\avrsinglestep}
Starts an interactive single-stepping mode, which was mainly used for implementing the emulator.
\DescribeMacro{\usravremulibrary}{\meta{list of libraryies}}
\subsection{Access to the Serial Console}
If the program write to the \verb|UDR| IO register, the emulator catched those characters in an
internal buffer.
\DescribeMacro{\avrUDR}
Expands to the internal UDR buffer.
\DescribeMacro{\avrUDRclear}
Clears the internal UDR buffer.
\subsection{Draw Library}
\DescribeMacro{\useavremulibrary}{avr.draw}
See source/test-suite/mandelbrot.c for more details.
\section{Implementation Details}
Read the source.
\end{document}
%%% Local Variables:

View File

@ -1,5 +1,5 @@
\documentclass{article}
\usepackage{avremu}
\usepackage[debug]{avremu}
\begin{document}
\makeatletter

View File

@ -1,7 +1,7 @@
\documentclass{article}
\usepackage{graphicx}
\usepackage{avremu}
\usepackage[debug]{avremu}
\useavremulibrary{avr.draw}
\errorcontextlines=23