1
0
mirror of synced 2024-11-25 18:54:23 +01:00
avr_demo/blog/driving_595/spi/main.c
2012-01-13 23:30:00 +02:00

81 lines
2.4 KiB
C

/*
* Code to write data to two daisychained TPIC6B595 SIPO shift registers.
*
* http://appelsiini.net/2011/driving-595-shift-registers
*
* The TPIC6B595 is a monolithic, high-voltage, medium-current power 8-bit
* shift register designed for use in systems that require relatively high
* load power.
*
* This device contains an 8-bit serial-in, parallel-out shift register that
* feeds an 8-bit D-type storage register. Data transfers through both the
* shift and storage registers on the rising edge of the shift-register clock
* (SRCK) and the register clock (RCK), respectively. The storage register
* transfers data to the output buffer when shift-register clear (SRCLR) is
* high. When SRCLR is low, the input shift register is cleared. When output
* enable (G) is held high, all data in the output buffers is held low and all
* drain outputs are off. When G is held low, data from the storage register
* is transparent to the output buffers. When data in the output buffers is
* low, the DMOS-transistor outputs are off. When data is high, the DMOS-
* transistor outputs have sink-current capability. The serial output (SER
* OUT) allows for cascading of the data from the shift register to additional
* devices.
*
* http://www.adafruit.com/datasheets/tpic6b595.pdf
*
* To compile and upload run: make clean; make; make program;
*
* Copyright 2012 Mika Tuupola
*
* Licensed under the MIT license:
* http://www.opensource.org/licenses/mit-license.php
*
*/
#include <util/delay.h>
#include "main.h"
#include "pins/digital.h"
#define SS B0
#define SCLK B1
#define MOSI B2
#define MISO B3
void spi_init(void) {
pin_mode(SCLK, OUTPUT);
pin_mode(MOSI, OUTPUT);
pin_mode(SS, OUTPUT); /* Should be output in Master mode. */
SPCR &= ~(_BV(DORD)); /* MSB first. */
SPCR |= _BV(MSTR); /* Act as master. */
SPCR |= _BV(SPE); /* Enable SPI. */
}
uint8_t spi_transfer(volatile uint8_t data) {
SPDR = data;
loop_until_bit_is_set(SPSR, SPIF);
return SPDR;
}
int main(void) {
spi_init();
for(uint16_t i = 0; i < 0xffff; i++) {
/* Shift high byte first to shift registers. */
spi_transfer(i >> 8);
spi_transfer(i & 0xff);
/* Pulse latch to transfer data from shift registers */
/* to storage registers. */
digital_write(SS, LOW);
digital_write(SS, HIGH);
_delay_ms(50);
}
return 0;
}