

MONASH BUSINESS SCHOOL

Monash

Rob J Hyndman

February 25, 2019

- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

Time plots

autoplot(USAccDeaths) + ylab("Total deaths") + xlab("Year")

- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

Seasonal plots

6

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: ggseasonplot()

- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

Seasonal polar plots

```
ggseasonplot(USAccDeaths, year.labels=TRUE,
polar=TRUE) + ylab("Total deaths")
```


Seasonal polar plots

ggseasonplot(USAccDeaths, year.labels=TRUE, polar=TRUE) + ylab("Total deaths")

Only change is to switch to polar coordinates.

- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

Seasonal subseries plots

```
ggsubseriesplot(USAccDeaths) +
ylab("Total deaths")
```


- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: ggsubseriesplot()

- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

Lagged scatterplots

gglagplot(USAccDeaths, lags=9)

gglagplot(USAccDeaths, lags=9, do.lines=FALSE)

gglagplot(USAccDeaths, lags=9, do.lines=FALSE)

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- Autocorrelations are correlations associated with these scatterplots.

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_{k} = \frac{1}{T} \sum_{t=k+1}^{T} (y_{t} - \bar{y})(y_{t-k} - \bar{y})$$

and $r_{k} = c_{k}/c_{0}$

а

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_{k} = \frac{1}{T} \sum_{t=k+1}^{T} (y_{t} - \bar{y})(y_{t-k} - \bar{y})$$

nd $r_{k} = c_{k}/c_{0}$

- *r*¹ indicates how successive values of *y* relate to each other
- r₂ indicates how y values two periods apart relate to each other
- r_k is *almost* the same as the sample correlation between y_t and y_{t-k} .

Autocorrelation

Results for first 9 lags for USAccDeaths data:								
<i>r</i> ₁	r ₂	r ₃	r ₄	r 5	r ₆	r 7	r ₈	r ₉
0.707	0.409	0.084	-0.182	-0.294	-0.423	-0.346	-0.285	-0.065

```
ggAcf(USAccDeaths)
```

