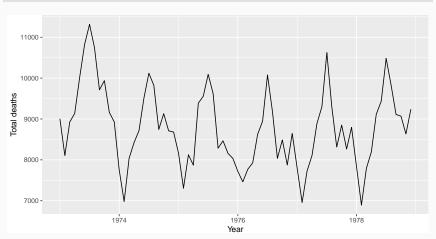




# Monash

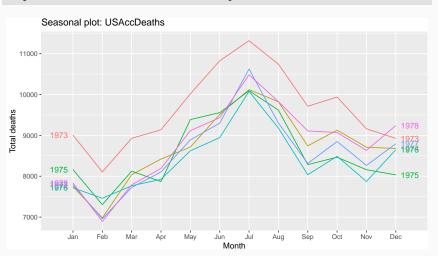
Rob J Hyndman


August 22, 2019

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

### **Time plots**


```
autoplot(USAccDeaths) +
  ylab("Total deaths") + xlab("Year")
```

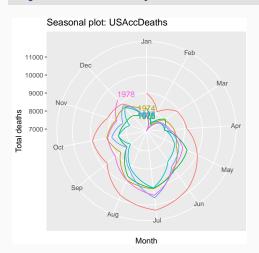


- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

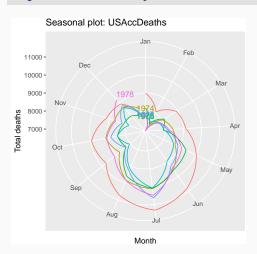
### **Seasonal plots**

```
ggseasonplot(USAccDeaths, year.labels=TRUE,
year.labels.left=TRUE) + ylab("Total deaths")
```




### **Seasonal plots**

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: ggseasonplot()

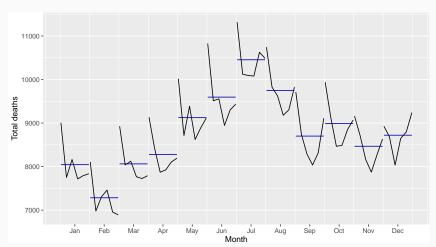

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

### Seasonal polar plots

```
ggseasonplot(USAccDeaths, year.labels=TRUE,
polar=TRUE) + ylab("Total deaths")
```



### Seasonal polar plots



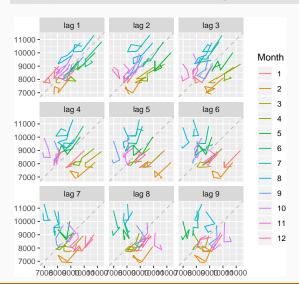

Only change is to switch to polar coordinates.

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

# **Seasonal subseries plots**

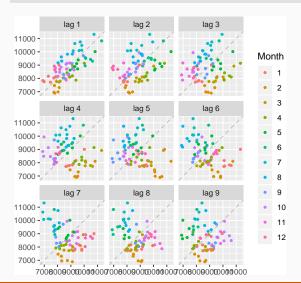
```
ggsubseriesplot(USAccDeaths) +
ylab("Total deaths")
```




### **Seasonal subseries plots**

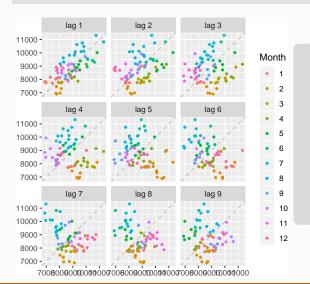
- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: ggsubseriesplot()

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation


#### **Lagged scatterplots**

#### gglagplot(USAccDeaths, lags=9)




#### **Lagged scatterplots**

#### gglagplot(USAccDeaths, lags=9, do.lines=FALSE)



### **Lagged scatterplots**

#### gglagplot(USAccDeaths, lags=9, do.lines=FALSE)



- Each graph shows  $y_t$  plotted against  $y_{t-k}$  for different values of k.
- Autocorrelations are correlations associated with these scatterplots.

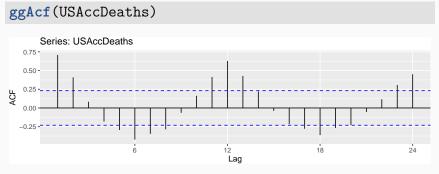
#### **Autocorrelation**

We denote the sample autocovariance at lag k by  $c_k$  and the sample autocorrelation at lag k by  $r_k$ . Then define

$$c_{k} = \frac{1}{T} \sum_{t=k+1}^{T} (y_{t} - \bar{y})(y_{t-k} - \bar{y})$$
and  $r_{k} = c_{k}/c_{0}$ 

#### **Autocorrelation**

We denote the sample autocovariance at lag k by  $c_k$  and the sample autocorrelation at lag k by  $r_k$ . Then define


$$c_k = \frac{1}{T} \sum_{t=k+1}^T (y_t - \bar{y})(y_{t-k} - \bar{y})$$
 and 
$$r_k = c_k/c_0$$

- $\blacksquare$   $r_1$  indicates how successive values of y relate to each other
- $lue{r}_2$  indicates how y values two periods apart relate to each other
- $r_k$  is almost the same as the sample correlation between  $y_t$  and  $y_{t-k}$ .

#### **Autocorrelation**

Results for first 9 lags for USAccDeaths data:

| r <sub>1</sub> | r <sub>2</sub> | r <sub>3</sub> | r <sub>4</sub> | <b>r</b> <sub>5</sub> | r <sub>6</sub> | <b>r</b> <sub>7</sub> | r <sub>8</sub> | r <sub>9</sub> |
|----------------|----------------|----------------|----------------|-----------------------|----------------|-----------------------|----------------|----------------|
| 0.707          | 0.409          | 0.084          | -0.182         | -0.294                | -0.423         | -0.346                | -0.285         | -0.065         |

